![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmtridf1o | Structured version Visualization version GIF version |
Description: Transpositions of 𝑋 and 𝑌 (understood to be the identity when 𝑋 = 𝑌), are bijections. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
Ref | Expression |
---|---|
pmtridf1o.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
pmtridf1o.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
pmtridf1o.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
pmtridf1o.t | ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
Ref | Expression |
---|---|
pmtridf1o | ⊢ (𝜑 → 𝑇:𝐴–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtridf1o.t | . . . 4 ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) | |
2 | iftrue 4313 | . . . . 5 ⊢ (𝑋 = 𝑌 → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴)) | |
3 | 2 | adantl 475 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴)) |
4 | 1, 3 | syl5eq 2826 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑇 = ( I ↾ 𝐴)) |
5 | f1oi 6428 | . . . 4 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → ( I ↾ 𝐴):𝐴–1-1-onto→𝐴) |
7 | f1oeq1 6380 | . . . 4 ⊢ (𝑇 = ( I ↾ 𝐴) → (𝑇:𝐴–1-1-onto→𝐴 ↔ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴)) | |
8 | 7 | biimpar 471 | . . 3 ⊢ ((𝑇 = ( I ↾ 𝐴) ∧ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴) → 𝑇:𝐴–1-1-onto→𝐴) |
9 | 4, 6, 8 | syl2anc 579 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑇:𝐴–1-1-onto→𝐴) |
10 | simpr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
11 | 10 | neneqd 2974 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ¬ 𝑋 = 𝑌) |
12 | iffalse 4316 | . . . . . 6 ⊢ (¬ 𝑋 = 𝑌 → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
14 | 1, 13 | syl5eq 2826 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑇 = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
15 | pmtridf1o.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
16 | 15 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐴 ∈ 𝑉) |
17 | pmtridf1o.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
18 | 17 | adantr 474 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝐴) |
19 | pmtridf1o.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
20 | 19 | adantr 474 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝐴) |
21 | 18, 20 | prssd 4584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ 𝐴) |
22 | pr2nelem 9160 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ≈ 2o) | |
23 | 18, 20, 10, 22 | syl3anc 1439 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ≈ 2o) |
24 | eqid 2778 | . . . . . 6 ⊢ (pmTrsp‘𝐴) = (pmTrsp‘𝐴) | |
25 | eqid 2778 | . . . . . 6 ⊢ ran (pmTrsp‘𝐴) = ran (pmTrsp‘𝐴) | |
26 | 24, 25 | pmtrrn 18260 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐴 ∧ {𝑋, 𝑌} ≈ 2o) → ((pmTrsp‘𝐴)‘{𝑋, 𝑌}) ∈ ran (pmTrsp‘𝐴)) |
27 | 16, 21, 23, 26 | syl3anc 1439 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((pmTrsp‘𝐴)‘{𝑋, 𝑌}) ∈ ran (pmTrsp‘𝐴)) |
28 | 14, 27 | eqeltrd 2859 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑇 ∈ ran (pmTrsp‘𝐴)) |
29 | 24, 25 | pmtrff1o 18266 | . . 3 ⊢ (𝑇 ∈ ran (pmTrsp‘𝐴) → 𝑇:𝐴–1-1-onto→𝐴) |
30 | 28, 29 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑇:𝐴–1-1-onto→𝐴) |
31 | 9, 30 | pm2.61dane 3057 | 1 ⊢ (𝜑 → 𝑇:𝐴–1-1-onto→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ⊆ wss 3792 ifcif 4307 {cpr 4400 class class class wbr 4886 I cid 5260 ran crn 5356 ↾ cres 5357 –1-1-onto→wf1o 6134 ‘cfv 6135 2oc2o 7837 ≈ cen 8238 pmTrspcpmtr 18244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-om 7344 df-1o 7843 df-2o 7844 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-pmtr 18245 |
This theorem is referenced by: reprpmtf1o 31306 hgt750lema 31337 |
Copyright terms: Public domain | W3C validator |