| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmtridf1o | Structured version Visualization version GIF version | ||
| Description: Transpositions of 𝑋 and 𝑌 (understood to be the identity when 𝑋 = 𝑌), are bijections. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
| Ref | Expression |
|---|---|
| pmtridf1o.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| pmtridf1o.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| pmtridf1o.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| pmtridf1o.t | ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
| Ref | Expression |
|---|---|
| pmtridf1o | ⊢ (𝜑 → 𝑇:𝐴–1-1-onto→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtridf1o.t | . . . 4 ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) | |
| 2 | iftrue 4511 | . . . . 5 ⊢ (𝑋 = 𝑌 → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴)) | |
| 3 | 2 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴)) |
| 4 | 1, 3 | eqtrid 2783 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑇 = ( I ↾ 𝐴)) |
| 5 | f1oi 6861 | . . . 4 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → ( I ↾ 𝐴):𝐴–1-1-onto→𝐴) |
| 7 | f1oeq1 6811 | . . . 4 ⊢ (𝑇 = ( I ↾ 𝐴) → (𝑇:𝐴–1-1-onto→𝐴 ↔ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴)) | |
| 8 | 7 | biimpar 477 | . . 3 ⊢ ((𝑇 = ( I ↾ 𝐴) ∧ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴) → 𝑇:𝐴–1-1-onto→𝐴) |
| 9 | 4, 6, 8 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑇:𝐴–1-1-onto→𝐴) |
| 10 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
| 11 | 10 | neneqd 2938 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ¬ 𝑋 = 𝑌) |
| 12 | iffalse 4514 | . . . . . 6 ⊢ (¬ 𝑋 = 𝑌 → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
| 14 | 1, 13 | eqtrid 2783 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑇 = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
| 15 | pmtridf1o.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐴 ∈ 𝑉) |
| 17 | pmtridf1o.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 18 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝐴) |
| 19 | pmtridf1o.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
| 20 | 19 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝐴) |
| 21 | 18, 20 | prssd 4803 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ 𝐴) |
| 22 | enpr2 10021 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ≈ 2o) | |
| 23 | 18, 20, 10, 22 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ≈ 2o) |
| 24 | eqid 2736 | . . . . . 6 ⊢ (pmTrsp‘𝐴) = (pmTrsp‘𝐴) | |
| 25 | eqid 2736 | . . . . . 6 ⊢ ran (pmTrsp‘𝐴) = ran (pmTrsp‘𝐴) | |
| 26 | 24, 25 | pmtrrn 19443 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐴 ∧ {𝑋, 𝑌} ≈ 2o) → ((pmTrsp‘𝐴)‘{𝑋, 𝑌}) ∈ ran (pmTrsp‘𝐴)) |
| 27 | 16, 21, 23, 26 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((pmTrsp‘𝐴)‘{𝑋, 𝑌}) ∈ ran (pmTrsp‘𝐴)) |
| 28 | 14, 27 | eqeltrd 2835 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑇 ∈ ran (pmTrsp‘𝐴)) |
| 29 | 24, 25 | pmtrff1o 19449 | . . 3 ⊢ (𝑇 ∈ ran (pmTrsp‘𝐴) → 𝑇:𝐴–1-1-onto→𝐴) |
| 30 | 28, 29 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑇:𝐴–1-1-onto→𝐴) |
| 31 | 9, 30 | pm2.61dane 3020 | 1 ⊢ (𝜑 → 𝑇:𝐴–1-1-onto→𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ⊆ wss 3931 ifcif 4505 {cpr 4608 class class class wbr 5124 I cid 5552 ran crn 5660 ↾ cres 5661 –1-1-onto→wf1o 6535 ‘cfv 6536 2oc2o 8479 ≈ cen 8961 pmTrspcpmtr 19427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-1o 8485 df-2o 8486 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pmtr 19428 |
| This theorem is referenced by: reprpmtf1o 34663 hgt750lema 34694 |
| Copyright terms: Public domain | W3C validator |