Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmtridf1o | Structured version Visualization version GIF version |
Description: Transpositions of 𝑋 and 𝑌 (understood to be the identity when 𝑋 = 𝑌), are bijections. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
Ref | Expression |
---|---|
pmtridf1o.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
pmtridf1o.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
pmtridf1o.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
pmtridf1o.t | ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
Ref | Expression |
---|---|
pmtridf1o | ⊢ (𝜑 → 𝑇:𝐴–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtridf1o.t | . . . 4 ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) | |
2 | iftrue 4462 | . . . . 5 ⊢ (𝑋 = 𝑌 → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴)) | |
3 | 2 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴)) |
4 | 1, 3 | syl5eq 2791 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑇 = ( I ↾ 𝐴)) |
5 | f1oi 6737 | . . . 4 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → ( I ↾ 𝐴):𝐴–1-1-onto→𝐴) |
7 | f1oeq1 6688 | . . . 4 ⊢ (𝑇 = ( I ↾ 𝐴) → (𝑇:𝐴–1-1-onto→𝐴 ↔ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴)) | |
8 | 7 | biimpar 477 | . . 3 ⊢ ((𝑇 = ( I ↾ 𝐴) ∧ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴) → 𝑇:𝐴–1-1-onto→𝐴) |
9 | 4, 6, 8 | syl2anc 583 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑇:𝐴–1-1-onto→𝐴) |
10 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
11 | 10 | neneqd 2947 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ¬ 𝑋 = 𝑌) |
12 | iffalse 4465 | . . . . . 6 ⊢ (¬ 𝑋 = 𝑌 → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
14 | 1, 13 | syl5eq 2791 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑇 = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
15 | pmtridf1o.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐴 ∈ 𝑉) |
17 | pmtridf1o.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
18 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝐴) |
19 | pmtridf1o.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
20 | 19 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝐴) |
21 | 18, 20 | prssd 4752 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ 𝐴) |
22 | pr2nelem 9691 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ≈ 2o) | |
23 | 18, 20, 10, 22 | syl3anc 1369 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ≈ 2o) |
24 | eqid 2738 | . . . . . 6 ⊢ (pmTrsp‘𝐴) = (pmTrsp‘𝐴) | |
25 | eqid 2738 | . . . . . 6 ⊢ ran (pmTrsp‘𝐴) = ran (pmTrsp‘𝐴) | |
26 | 24, 25 | pmtrrn 18980 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐴 ∧ {𝑋, 𝑌} ≈ 2o) → ((pmTrsp‘𝐴)‘{𝑋, 𝑌}) ∈ ran (pmTrsp‘𝐴)) |
27 | 16, 21, 23, 26 | syl3anc 1369 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((pmTrsp‘𝐴)‘{𝑋, 𝑌}) ∈ ran (pmTrsp‘𝐴)) |
28 | 14, 27 | eqeltrd 2839 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑇 ∈ ran (pmTrsp‘𝐴)) |
29 | 24, 25 | pmtrff1o 18986 | . . 3 ⊢ (𝑇 ∈ ran (pmTrsp‘𝐴) → 𝑇:𝐴–1-1-onto→𝐴) |
30 | 28, 29 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑇:𝐴–1-1-onto→𝐴) |
31 | 9, 30 | pm2.61dane 3031 | 1 ⊢ (𝜑 → 𝑇:𝐴–1-1-onto→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ⊆ wss 3883 ifcif 4456 {cpr 4560 class class class wbr 5070 I cid 5479 ran crn 5581 ↾ cres 5582 –1-1-onto→wf1o 6417 ‘cfv 6418 2oc2o 8261 ≈ cen 8688 pmTrspcpmtr 18964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pmtr 18965 |
This theorem is referenced by: reprpmtf1o 32506 hgt750lema 32537 |
Copyright terms: Public domain | W3C validator |