![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmtridf1o | Structured version Visualization version GIF version |
Description: Transpositions of 𝑋 and 𝑌 (understood to be the identity when 𝑋 = 𝑌), are bijections. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
Ref | Expression |
---|---|
pmtridf1o.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
pmtridf1o.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
pmtridf1o.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
pmtridf1o.t | ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
Ref | Expression |
---|---|
pmtridf1o | ⊢ (𝜑 → 𝑇:𝐴–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtridf1o.t | . . . 4 ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) | |
2 | iftrue 4554 | . . . . 5 ⊢ (𝑋 = 𝑌 → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴)) | |
3 | 2 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴)) |
4 | 1, 3 | eqtrid 2792 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑇 = ( I ↾ 𝐴)) |
5 | f1oi 6900 | . . . 4 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → ( I ↾ 𝐴):𝐴–1-1-onto→𝐴) |
7 | f1oeq1 6850 | . . . 4 ⊢ (𝑇 = ( I ↾ 𝐴) → (𝑇:𝐴–1-1-onto→𝐴 ↔ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴)) | |
8 | 7 | biimpar 477 | . . 3 ⊢ ((𝑇 = ( I ↾ 𝐴) ∧ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴) → 𝑇:𝐴–1-1-onto→𝐴) |
9 | 4, 6, 8 | syl2anc 583 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑇:𝐴–1-1-onto→𝐴) |
10 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
11 | 10 | neneqd 2951 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ¬ 𝑋 = 𝑌) |
12 | iffalse 4557 | . . . . . 6 ⊢ (¬ 𝑋 = 𝑌 → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
14 | 1, 13 | eqtrid 2792 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑇 = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
15 | pmtridf1o.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐴 ∈ 𝑉) |
17 | pmtridf1o.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
18 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝐴) |
19 | pmtridf1o.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
20 | 19 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝐴) |
21 | 18, 20 | prssd 4847 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ 𝐴) |
22 | enpr2 10071 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ≈ 2o) | |
23 | 18, 20, 10, 22 | syl3anc 1371 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ≈ 2o) |
24 | eqid 2740 | . . . . . 6 ⊢ (pmTrsp‘𝐴) = (pmTrsp‘𝐴) | |
25 | eqid 2740 | . . . . . 6 ⊢ ran (pmTrsp‘𝐴) = ran (pmTrsp‘𝐴) | |
26 | 24, 25 | pmtrrn 19499 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐴 ∧ {𝑋, 𝑌} ≈ 2o) → ((pmTrsp‘𝐴)‘{𝑋, 𝑌}) ∈ ran (pmTrsp‘𝐴)) |
27 | 16, 21, 23, 26 | syl3anc 1371 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((pmTrsp‘𝐴)‘{𝑋, 𝑌}) ∈ ran (pmTrsp‘𝐴)) |
28 | 14, 27 | eqeltrd 2844 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑇 ∈ ran (pmTrsp‘𝐴)) |
29 | 24, 25 | pmtrff1o 19505 | . . 3 ⊢ (𝑇 ∈ ran (pmTrsp‘𝐴) → 𝑇:𝐴–1-1-onto→𝐴) |
30 | 28, 29 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑇:𝐴–1-1-onto→𝐴) |
31 | 9, 30 | pm2.61dane 3035 | 1 ⊢ (𝜑 → 𝑇:𝐴–1-1-onto→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ⊆ wss 3976 ifcif 4548 {cpr 4650 class class class wbr 5166 I cid 5592 ran crn 5701 ↾ cres 5702 –1-1-onto→wf1o 6572 ‘cfv 6573 2oc2o 8516 ≈ cen 9000 pmTrspcpmtr 19483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pmtr 19484 |
This theorem is referenced by: reprpmtf1o 34603 hgt750lema 34634 |
Copyright terms: Public domain | W3C validator |