Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtridf1o Structured version   Visualization version   GIF version

Theorem pmtridf1o 33051
Description: Transpositions of 𝑋 and 𝑌 (understood to be the identity when 𝑋 = 𝑌), are bijections. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
pmtridf1o.a (𝜑𝐴𝑉)
pmtridf1o.x (𝜑𝑋𝐴)
pmtridf1o.y (𝜑𝑌𝐴)
pmtridf1o.t 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
Assertion
Ref Expression
pmtridf1o (𝜑𝑇:𝐴1-1-onto𝐴)

Proof of Theorem pmtridf1o
StepHypRef Expression
1 pmtridf1o.t . . . 4 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
2 iftrue 4494 . . . . 5 (𝑋 = 𝑌 → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴))
32adantl 481 . . . 4 ((𝜑𝑋 = 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴))
41, 3eqtrid 2776 . . 3 ((𝜑𝑋 = 𝑌) → 𝑇 = ( I ↾ 𝐴))
5 f1oi 6838 . . . 4 ( I ↾ 𝐴):𝐴1-1-onto𝐴
65a1i 11 . . 3 ((𝜑𝑋 = 𝑌) → ( I ↾ 𝐴):𝐴1-1-onto𝐴)
7 f1oeq1 6788 . . . 4 (𝑇 = ( I ↾ 𝐴) → (𝑇:𝐴1-1-onto𝐴 ↔ ( I ↾ 𝐴):𝐴1-1-onto𝐴))
87biimpar 477 . . 3 ((𝑇 = ( I ↾ 𝐴) ∧ ( I ↾ 𝐴):𝐴1-1-onto𝐴) → 𝑇:𝐴1-1-onto𝐴)
94, 6, 8syl2anc 584 . 2 ((𝜑𝑋 = 𝑌) → 𝑇:𝐴1-1-onto𝐴)
10 simpr 484 . . . . . . 7 ((𝜑𝑋𝑌) → 𝑋𝑌)
1110neneqd 2930 . . . . . 6 ((𝜑𝑋𝑌) → ¬ 𝑋 = 𝑌)
12 iffalse 4497 . . . . . 6 𝑋 = 𝑌 → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
1311, 12syl 17 . . . . 5 ((𝜑𝑋𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
141, 13eqtrid 2776 . . . 4 ((𝜑𝑋𝑌) → 𝑇 = ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
15 pmtridf1o.a . . . . . 6 (𝜑𝐴𝑉)
1615adantr 480 . . . . 5 ((𝜑𝑋𝑌) → 𝐴𝑉)
17 pmtridf1o.x . . . . . . 7 (𝜑𝑋𝐴)
1817adantr 480 . . . . . 6 ((𝜑𝑋𝑌) → 𝑋𝐴)
19 pmtridf1o.y . . . . . . 7 (𝜑𝑌𝐴)
2019adantr 480 . . . . . 6 ((𝜑𝑋𝑌) → 𝑌𝐴)
2118, 20prssd 4786 . . . . 5 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ 𝐴)
22 enpr2 9955 . . . . . 6 ((𝑋𝐴𝑌𝐴𝑋𝑌) → {𝑋, 𝑌} ≈ 2o)
2318, 20, 10, 22syl3anc 1373 . . . . 5 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ≈ 2o)
24 eqid 2729 . . . . . 6 (pmTrsp‘𝐴) = (pmTrsp‘𝐴)
25 eqid 2729 . . . . . 6 ran (pmTrsp‘𝐴) = ran (pmTrsp‘𝐴)
2624, 25pmtrrn 19387 . . . . 5 ((𝐴𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐴 ∧ {𝑋, 𝑌} ≈ 2o) → ((pmTrsp‘𝐴)‘{𝑋, 𝑌}) ∈ ran (pmTrsp‘𝐴))
2716, 21, 23, 26syl3anc 1373 . . . 4 ((𝜑𝑋𝑌) → ((pmTrsp‘𝐴)‘{𝑋, 𝑌}) ∈ ran (pmTrsp‘𝐴))
2814, 27eqeltrd 2828 . . 3 ((𝜑𝑋𝑌) → 𝑇 ∈ ran (pmTrsp‘𝐴))
2924, 25pmtrff1o 19393 . . 3 (𝑇 ∈ ran (pmTrsp‘𝐴) → 𝑇:𝐴1-1-onto𝐴)
3028, 29syl 17 . 2 ((𝜑𝑋𝑌) → 𝑇:𝐴1-1-onto𝐴)
319, 30pm2.61dane 3012 1 (𝜑𝑇:𝐴1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wss 3914  ifcif 4488  {cpr 4591   class class class wbr 5107   I cid 5532  ran crn 5639  cres 5640  1-1-ontowf1o 6510  cfv 6511  2oc2o 8428  cen 8915  pmTrspcpmtr 19371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pmtr 19372
This theorem is referenced by:  reprpmtf1o  34617  hgt750lema  34648
  Copyright terms: Public domain W3C validator