![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmtridf1o | Structured version Visualization version GIF version |
Description: Transpositions of 𝑋 and 𝑌 (understood to be the identity when 𝑋 = 𝑌), are bijections. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
Ref | Expression |
---|---|
pmtridf1o.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
pmtridf1o.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
pmtridf1o.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
pmtridf1o.t | ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
Ref | Expression |
---|---|
pmtridf1o | ⊢ (𝜑 → 𝑇:𝐴–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtridf1o.t | . . . 4 ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) | |
2 | iftrue 4526 | . . . . 5 ⊢ (𝑋 = 𝑌 → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴)) | |
3 | 2 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴)) |
4 | 1, 3 | eqtrid 2776 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑇 = ( I ↾ 𝐴)) |
5 | f1oi 6861 | . . . 4 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → ( I ↾ 𝐴):𝐴–1-1-onto→𝐴) |
7 | f1oeq1 6811 | . . . 4 ⊢ (𝑇 = ( I ↾ 𝐴) → (𝑇:𝐴–1-1-onto→𝐴 ↔ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴)) | |
8 | 7 | biimpar 477 | . . 3 ⊢ ((𝑇 = ( I ↾ 𝐴) ∧ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴) → 𝑇:𝐴–1-1-onto→𝐴) |
9 | 4, 6, 8 | syl2anc 583 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑇:𝐴–1-1-onto→𝐴) |
10 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
11 | 10 | neneqd 2937 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ¬ 𝑋 = 𝑌) |
12 | iffalse 4529 | . . . . . 6 ⊢ (¬ 𝑋 = 𝑌 → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
14 | 1, 13 | eqtrid 2776 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑇 = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
15 | pmtridf1o.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐴 ∈ 𝑉) |
17 | pmtridf1o.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
18 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝐴) |
19 | pmtridf1o.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
20 | 19 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝐴) |
21 | 18, 20 | prssd 4817 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ 𝐴) |
22 | enpr2 9992 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ≈ 2o) | |
23 | 18, 20, 10, 22 | syl3anc 1368 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ≈ 2o) |
24 | eqid 2724 | . . . . . 6 ⊢ (pmTrsp‘𝐴) = (pmTrsp‘𝐴) | |
25 | eqid 2724 | . . . . . 6 ⊢ ran (pmTrsp‘𝐴) = ran (pmTrsp‘𝐴) | |
26 | 24, 25 | pmtrrn 19362 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐴 ∧ {𝑋, 𝑌} ≈ 2o) → ((pmTrsp‘𝐴)‘{𝑋, 𝑌}) ∈ ran (pmTrsp‘𝐴)) |
27 | 16, 21, 23, 26 | syl3anc 1368 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((pmTrsp‘𝐴)‘{𝑋, 𝑌}) ∈ ran (pmTrsp‘𝐴)) |
28 | 14, 27 | eqeltrd 2825 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑇 ∈ ran (pmTrsp‘𝐴)) |
29 | 24, 25 | pmtrff1o 19368 | . . 3 ⊢ (𝑇 ∈ ran (pmTrsp‘𝐴) → 𝑇:𝐴–1-1-onto→𝐴) |
30 | 28, 29 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑇:𝐴–1-1-onto→𝐴) |
31 | 9, 30 | pm2.61dane 3021 | 1 ⊢ (𝜑 → 𝑇:𝐴–1-1-onto→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ⊆ wss 3940 ifcif 4520 {cpr 4622 class class class wbr 5138 I cid 5563 ran crn 5667 ↾ cres 5668 –1-1-onto→wf1o 6532 ‘cfv 6533 2oc2o 8455 ≈ cen 8931 pmTrspcpmtr 19346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-om 7849 df-1o 8461 df-2o 8462 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-pmtr 19347 |
This theorem is referenced by: reprpmtf1o 34093 hgt750lema 34124 |
Copyright terms: Public domain | W3C validator |