Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtridf1o Structured version   Visualization version   GIF version

Theorem pmtridf1o 32241
Description: Transpositions of 𝑋 and 𝑌 (understood to be the identity when 𝑋 = 𝑌), are bijections. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
pmtridf1o.a (𝜑𝐴𝑉)
pmtridf1o.x (𝜑𝑋𝐴)
pmtridf1o.y (𝜑𝑌𝐴)
pmtridf1o.t 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
Assertion
Ref Expression
pmtridf1o (𝜑𝑇:𝐴1-1-onto𝐴)

Proof of Theorem pmtridf1o
StepHypRef Expression
1 pmtridf1o.t . . . 4 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
2 iftrue 4534 . . . . 5 (𝑋 = 𝑌 → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴))
32adantl 483 . . . 4 ((𝜑𝑋 = 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴))
41, 3eqtrid 2785 . . 3 ((𝜑𝑋 = 𝑌) → 𝑇 = ( I ↾ 𝐴))
5 f1oi 6869 . . . 4 ( I ↾ 𝐴):𝐴1-1-onto𝐴
65a1i 11 . . 3 ((𝜑𝑋 = 𝑌) → ( I ↾ 𝐴):𝐴1-1-onto𝐴)
7 f1oeq1 6819 . . . 4 (𝑇 = ( I ↾ 𝐴) → (𝑇:𝐴1-1-onto𝐴 ↔ ( I ↾ 𝐴):𝐴1-1-onto𝐴))
87biimpar 479 . . 3 ((𝑇 = ( I ↾ 𝐴) ∧ ( I ↾ 𝐴):𝐴1-1-onto𝐴) → 𝑇:𝐴1-1-onto𝐴)
94, 6, 8syl2anc 585 . 2 ((𝜑𝑋 = 𝑌) → 𝑇:𝐴1-1-onto𝐴)
10 simpr 486 . . . . . . 7 ((𝜑𝑋𝑌) → 𝑋𝑌)
1110neneqd 2946 . . . . . 6 ((𝜑𝑋𝑌) → ¬ 𝑋 = 𝑌)
12 iffalse 4537 . . . . . 6 𝑋 = 𝑌 → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
1311, 12syl 17 . . . . 5 ((𝜑𝑋𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
141, 13eqtrid 2785 . . . 4 ((𝜑𝑋𝑌) → 𝑇 = ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
15 pmtridf1o.a . . . . . 6 (𝜑𝐴𝑉)
1615adantr 482 . . . . 5 ((𝜑𝑋𝑌) → 𝐴𝑉)
17 pmtridf1o.x . . . . . . 7 (𝜑𝑋𝐴)
1817adantr 482 . . . . . 6 ((𝜑𝑋𝑌) → 𝑋𝐴)
19 pmtridf1o.y . . . . . . 7 (𝜑𝑌𝐴)
2019adantr 482 . . . . . 6 ((𝜑𝑋𝑌) → 𝑌𝐴)
2118, 20prssd 4825 . . . . 5 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ 𝐴)
22 enpr2 9994 . . . . . 6 ((𝑋𝐴𝑌𝐴𝑋𝑌) → {𝑋, 𝑌} ≈ 2o)
2318, 20, 10, 22syl3anc 1372 . . . . 5 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ≈ 2o)
24 eqid 2733 . . . . . 6 (pmTrsp‘𝐴) = (pmTrsp‘𝐴)
25 eqid 2733 . . . . . 6 ran (pmTrsp‘𝐴) = ran (pmTrsp‘𝐴)
2624, 25pmtrrn 19320 . . . . 5 ((𝐴𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐴 ∧ {𝑋, 𝑌} ≈ 2o) → ((pmTrsp‘𝐴)‘{𝑋, 𝑌}) ∈ ran (pmTrsp‘𝐴))
2716, 21, 23, 26syl3anc 1372 . . . 4 ((𝜑𝑋𝑌) → ((pmTrsp‘𝐴)‘{𝑋, 𝑌}) ∈ ran (pmTrsp‘𝐴))
2814, 27eqeltrd 2834 . . 3 ((𝜑𝑋𝑌) → 𝑇 ∈ ran (pmTrsp‘𝐴))
2924, 25pmtrff1o 19326 . . 3 (𝑇 ∈ ran (pmTrsp‘𝐴) → 𝑇:𝐴1-1-onto𝐴)
3028, 29syl 17 . 2 ((𝜑𝑋𝑌) → 𝑇:𝐴1-1-onto𝐴)
319, 30pm2.61dane 3030 1 (𝜑𝑇:𝐴1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  wss 3948  ifcif 4528  {cpr 4630   class class class wbr 5148   I cid 5573  ran crn 5677  cres 5678  1-1-ontowf1o 6540  cfv 6541  2oc2o 8457  cen 8933  pmTrspcpmtr 19304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-om 7853  df-1o 8463  df-2o 8464  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-pmtr 19305
This theorem is referenced by:  reprpmtf1o  33627  hgt750lema  33658
  Copyright terms: Public domain W3C validator