Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrprfv2 Structured version   Visualization version   GIF version

Theorem pmtrprfv2 30785
 Description: In a transposition of two given points, each maps to the other. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypothesis
Ref Expression
pmtrprfv2.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrprfv2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑌) = 𝑋)

Proof of Theorem pmtrprfv2
StepHypRef Expression
1 prcom 4631 . . . 4 {𝑌, 𝑋} = {𝑋, 𝑌}
21fveq2i 6652 . . 3 (𝑇‘{𝑌, 𝑋}) = (𝑇‘{𝑋, 𝑌})
32fveq1i 6650 . 2 ((𝑇‘{𝑌, 𝑋})‘𝑌) = ((𝑇‘{𝑋, 𝑌})‘𝑌)
4 ancom 464 . . . . 5 ((𝑋𝐷𝑌𝐷) ↔ (𝑌𝐷𝑋𝐷))
5 necom 3043 . . . . 5 (𝑋𝑌𝑌𝑋)
64, 5anbi12i 629 . . . 4 (((𝑋𝐷𝑌𝐷) ∧ 𝑋𝑌) ↔ ((𝑌𝐷𝑋𝐷) ∧ 𝑌𝑋))
7 df-3an 1086 . . . 4 ((𝑋𝐷𝑌𝐷𝑋𝑌) ↔ ((𝑋𝐷𝑌𝐷) ∧ 𝑋𝑌))
8 df-3an 1086 . . . 4 ((𝑌𝐷𝑋𝐷𝑌𝑋) ↔ ((𝑌𝐷𝑋𝐷) ∧ 𝑌𝑋))
96, 7, 83bitr4i 306 . . 3 ((𝑋𝐷𝑌𝐷𝑋𝑌) ↔ (𝑌𝐷𝑋𝐷𝑌𝑋))
10 pmtrprfv2.t . . . 4 𝑇 = (pmTrsp‘𝐷)
1110pmtrprfv 18576 . . 3 ((𝐷𝑉 ∧ (𝑌𝐷𝑋𝐷𝑌𝑋)) → ((𝑇‘{𝑌, 𝑋})‘𝑌) = 𝑋)
129, 11sylan2b 596 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑌, 𝑋})‘𝑌) = 𝑋)
133, 12syl5eqr 2850 1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑌) = 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  {cpr 4530  ‘cfv 6328  pmTrspcpmtr 18564 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-om 7565  df-1o 8089  df-2o 8090  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pmtr 18565 This theorem is referenced by:  pmtrcnel  30786  pmtridfv2  30791  psgnfzto1stlem  30795
 Copyright terms: Public domain W3C validator