![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmtrprfv2 | Structured version Visualization version GIF version |
Description: In a transposition of two given points, each maps to the other. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
Ref | Expression |
---|---|
pmtrprfv2.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
Ref | Expression |
---|---|
pmtrprfv2 | ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑌) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 4731 | . . . 4 ⊢ {𝑌, 𝑋} = {𝑋, 𝑌} | |
2 | 1 | fveq2i 6888 | . . 3 ⊢ (𝑇‘{𝑌, 𝑋}) = (𝑇‘{𝑋, 𝑌}) |
3 | 2 | fveq1i 6886 | . 2 ⊢ ((𝑇‘{𝑌, 𝑋})‘𝑌) = ((𝑇‘{𝑋, 𝑌})‘𝑌) |
4 | ancom 460 | . . . . 5 ⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) ↔ (𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷)) | |
5 | necom 2988 | . . . . 5 ⊢ (𝑋 ≠ 𝑌 ↔ 𝑌 ≠ 𝑋) | |
6 | 4, 5 | anbi12i 626 | . . . 4 ⊢ (((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) ∧ 𝑋 ≠ 𝑌) ↔ ((𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷) ∧ 𝑌 ≠ 𝑋)) |
7 | df-3an 1086 | . . . 4 ⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌) ↔ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) ∧ 𝑋 ≠ 𝑌)) | |
8 | df-3an 1086 | . . . 4 ⊢ ((𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ≠ 𝑋) ↔ ((𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷) ∧ 𝑌 ≠ 𝑋)) | |
9 | 6, 7, 8 | 3bitr4i 303 | . . 3 ⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌) ↔ (𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ≠ 𝑋)) |
10 | pmtrprfv2.t | . . . 4 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
11 | 10 | pmtrprfv 19373 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ≠ 𝑋)) → ((𝑇‘{𝑌, 𝑋})‘𝑌) = 𝑋) |
12 | 9, 11 | sylan2b 593 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → ((𝑇‘{𝑌, 𝑋})‘𝑌) = 𝑋) |
13 | 3, 12 | eqtr3id 2780 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑌) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 {cpr 4625 ‘cfv 6537 pmTrspcpmtr 19361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-1o 8467 df-2o 8468 df-en 8942 df-pmtr 19362 |
This theorem is referenced by: pmtrcnel 32756 pmtridfv2 32761 psgnfzto1stlem 32765 |
Copyright terms: Public domain | W3C validator |