![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmtrprfv2 | Structured version Visualization version GIF version |
Description: In a transposition of two given points, each maps to the other. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
Ref | Expression |
---|---|
pmtrprfv2.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
Ref | Expression |
---|---|
pmtrprfv2 | ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑌) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 4757 | . . . 4 ⊢ {𝑌, 𝑋} = {𝑋, 𝑌} | |
2 | 1 | fveq2i 6923 | . . 3 ⊢ (𝑇‘{𝑌, 𝑋}) = (𝑇‘{𝑋, 𝑌}) |
3 | 2 | fveq1i 6921 | . 2 ⊢ ((𝑇‘{𝑌, 𝑋})‘𝑌) = ((𝑇‘{𝑋, 𝑌})‘𝑌) |
4 | ancom 460 | . . . . 5 ⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) ↔ (𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷)) | |
5 | necom 3000 | . . . . 5 ⊢ (𝑋 ≠ 𝑌 ↔ 𝑌 ≠ 𝑋) | |
6 | 4, 5 | anbi12i 627 | . . . 4 ⊢ (((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) ∧ 𝑋 ≠ 𝑌) ↔ ((𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷) ∧ 𝑌 ≠ 𝑋)) |
7 | df-3an 1089 | . . . 4 ⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌) ↔ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) ∧ 𝑋 ≠ 𝑌)) | |
8 | df-3an 1089 | . . . 4 ⊢ ((𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ≠ 𝑋) ↔ ((𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷) ∧ 𝑌 ≠ 𝑋)) | |
9 | 6, 7, 8 | 3bitr4i 303 | . . 3 ⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌) ↔ (𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ≠ 𝑋)) |
10 | pmtrprfv2.t | . . . 4 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
11 | 10 | pmtrprfv 19495 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ≠ 𝑋)) → ((𝑇‘{𝑌, 𝑋})‘𝑌) = 𝑋) |
12 | 9, 11 | sylan2b 593 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → ((𝑇‘{𝑌, 𝑋})‘𝑌) = 𝑋) |
13 | 3, 12 | eqtr3id 2794 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑌) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {cpr 4650 ‘cfv 6573 pmTrspcpmtr 19483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-1o 8522 df-2o 8523 df-en 9004 df-pmtr 19484 |
This theorem is referenced by: pmtrcnel 33082 fzo0pmtrlast 33085 pmtridfv2 33089 psgnfzto1stlem 33093 |
Copyright terms: Public domain | W3C validator |