Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrprfv2 Structured version   Visualization version   GIF version

Theorem pmtrprfv2 33066
Description: In a transposition of two given points, each maps to the other. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypothesis
Ref Expression
pmtrprfv2.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrprfv2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑌) = 𝑋)

Proof of Theorem pmtrprfv2
StepHypRef Expression
1 prcom 4686 . . . 4 {𝑌, 𝑋} = {𝑋, 𝑌}
21fveq2i 6833 . . 3 (𝑇‘{𝑌, 𝑋}) = (𝑇‘{𝑋, 𝑌})
32fveq1i 6831 . 2 ((𝑇‘{𝑌, 𝑋})‘𝑌) = ((𝑇‘{𝑋, 𝑌})‘𝑌)
4 ancom 460 . . . . 5 ((𝑋𝐷𝑌𝐷) ↔ (𝑌𝐷𝑋𝐷))
5 necom 2982 . . . . 5 (𝑋𝑌𝑌𝑋)
64, 5anbi12i 628 . . . 4 (((𝑋𝐷𝑌𝐷) ∧ 𝑋𝑌) ↔ ((𝑌𝐷𝑋𝐷) ∧ 𝑌𝑋))
7 df-3an 1088 . . . 4 ((𝑋𝐷𝑌𝐷𝑋𝑌) ↔ ((𝑋𝐷𝑌𝐷) ∧ 𝑋𝑌))
8 df-3an 1088 . . . 4 ((𝑌𝐷𝑋𝐷𝑌𝑋) ↔ ((𝑌𝐷𝑋𝐷) ∧ 𝑌𝑋))
96, 7, 83bitr4i 303 . . 3 ((𝑋𝐷𝑌𝐷𝑋𝑌) ↔ (𝑌𝐷𝑋𝐷𝑌𝑋))
10 pmtrprfv2.t . . . 4 𝑇 = (pmTrsp‘𝐷)
1110pmtrprfv 19369 . . 3 ((𝐷𝑉 ∧ (𝑌𝐷𝑋𝐷𝑌𝑋)) → ((𝑇‘{𝑌, 𝑋})‘𝑌) = 𝑋)
129, 11sylan2b 594 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑌, 𝑋})‘𝑌) = 𝑋)
133, 12eqtr3id 2782 1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  {cpr 4579  cfv 6488  pmTrspcpmtr 19357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-1o 8393  df-2o 8394  df-en 8878  df-pmtr 19358
This theorem is referenced by:  pmtrcnel  33067  fzo0pmtrlast  33070  pmtridfv2  33074  psgnfzto1stlem  33078
  Copyright terms: Public domain W3C validator