| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmtrprfv2 | Structured version Visualization version GIF version | ||
| Description: In a transposition of two given points, each maps to the other. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
| Ref | Expression |
|---|---|
| pmtrprfv2.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
| Ref | Expression |
|---|---|
| pmtrprfv2 | ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑌) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom 4685 | . . . 4 ⊢ {𝑌, 𝑋} = {𝑋, 𝑌} | |
| 2 | 1 | fveq2i 6825 | . . 3 ⊢ (𝑇‘{𝑌, 𝑋}) = (𝑇‘{𝑋, 𝑌}) |
| 3 | 2 | fveq1i 6823 | . 2 ⊢ ((𝑇‘{𝑌, 𝑋})‘𝑌) = ((𝑇‘{𝑋, 𝑌})‘𝑌) |
| 4 | ancom 460 | . . . . 5 ⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) ↔ (𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷)) | |
| 5 | necom 2981 | . . . . 5 ⊢ (𝑋 ≠ 𝑌 ↔ 𝑌 ≠ 𝑋) | |
| 6 | 4, 5 | anbi12i 628 | . . . 4 ⊢ (((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) ∧ 𝑋 ≠ 𝑌) ↔ ((𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷) ∧ 𝑌 ≠ 𝑋)) |
| 7 | df-3an 1088 | . . . 4 ⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌) ↔ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) ∧ 𝑋 ≠ 𝑌)) | |
| 8 | df-3an 1088 | . . . 4 ⊢ ((𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ≠ 𝑋) ↔ ((𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷) ∧ 𝑌 ≠ 𝑋)) | |
| 9 | 6, 7, 8 | 3bitr4i 303 | . . 3 ⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌) ↔ (𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ≠ 𝑋)) |
| 10 | pmtrprfv2.t | . . . 4 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
| 11 | 10 | pmtrprfv 19366 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ≠ 𝑋)) → ((𝑇‘{𝑌, 𝑋})‘𝑌) = 𝑋) |
| 12 | 9, 11 | sylan2b 594 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → ((𝑇‘{𝑌, 𝑋})‘𝑌) = 𝑋) |
| 13 | 3, 12 | eqtr3id 2780 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑌) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {cpr 4578 ‘cfv 6481 pmTrspcpmtr 19354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-1o 8385 df-2o 8386 df-en 8870 df-pmtr 19355 |
| This theorem is referenced by: pmtrcnel 33056 fzo0pmtrlast 33059 pmtridfv2 33063 psgnfzto1stlem 33067 |
| Copyright terms: Public domain | W3C validator |