Proof of Theorem ranup
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2734 |
. . . 4
⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) |
| 2 | 1 | fucbas 17963 |
. . 3
⊢ (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸)) |
| 3 | | lanup.s |
. . . 4
⊢ 𝑆 = (𝐶 FuncCat 𝐸) |
| 4 | 3 | fucbas 17963 |
. . 3
⊢ (𝐶 Func 𝐸) = (Base‘𝑆) |
| 5 | | lanup.m |
. . . 4
⊢ 𝑀 = (𝐷 Nat 𝐸) |
| 6 | 1, 5 | fuchom 17964 |
. . 3
⊢ 𝑀 = (Hom ‘(𝐷 FuncCat 𝐸)) |
| 7 | | lanup.n |
. . . 4
⊢ 𝑁 = (𝐶 Nat 𝐸) |
| 8 | 3, 7 | fuchom 17964 |
. . 3
⊢ 𝑁 = (Hom ‘𝑆) |
| 9 | | lanup.x |
. . 3
⊢ ∙ =
(comp‘𝑆) |
| 10 | | ranup.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ((𝐿 ∘func 𝐹)𝑁𝑋)) |
| 11 | 7 | natrcl 17953 |
. . . . 5
⊢ (𝐴 ∈ ((𝐿 ∘func 𝐹)𝑁𝑋) → ((𝐿 ∘func 𝐹) ∈ (𝐶 Func 𝐸) ∧ 𝑋 ∈ (𝐶 Func 𝐸))) |
| 12 | 10, 11 | syl 17 |
. . . 4
⊢ (𝜑 → ((𝐿 ∘func 𝐹) ∈ (𝐶 Func 𝐸) ∧ 𝑋 ∈ (𝐶 Func 𝐸))) |
| 13 | 12 | simprd 495 |
. . 3
⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐸)) |
| 14 | 13 | func1st2nd 48936 |
. . . . 5
⊢ (𝜑 → (1st
‘𝑋)(𝐶 Func 𝐸)(2nd ‘𝑋)) |
| 15 | 14 | funcrcl3 48938 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ Cat) |
| 16 | | lanup.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 17 | | opex 5437 |
. . . . . . 7
⊢
〈𝐷, 𝐸〉 ∈ V |
| 18 | 17 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 〈𝐷, 𝐸〉 ∈ V) |
| 19 | 16, 18 | prcofelvv 49153 |
. . . . 5
⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F
𝐹) ∈ (V ×
V)) |
| 20 | | 1st2nd2 8022 |
. . . . 5
⊢
((〈𝐷, 𝐸〉
−∘F 𝐹) ∈ (V × V) → (〈𝐷, 𝐸〉 −∘F
𝐹) = 〈(1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹)), (2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))〉) |
| 21 | 19, 20 | syl 17 |
. . . 4
⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F
𝐹) = 〈(1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹)), (2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))〉) |
| 22 | 1, 15, 3, 16, 21 | prcoffunca2 49160 |
. . 3
⊢ (𝜑 → (1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))((𝐷 FuncCat 𝐸) Func 𝑆)(2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))) |
| 23 | | lanup.l |
. . 3
⊢ (𝜑 → 𝐿 ∈ (𝐷 Func 𝐸)) |
| 24 | | eqidd 2735 |
. . . . . 6
⊢ (𝜑 → (1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹)) = (1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))) |
| 25 | 23, 24 | prcof1 49161 |
. . . . 5
⊢ (𝜑 → ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝐿) = (𝐿 ∘func 𝐹)) |
| 26 | 25 | oveq1d 7415 |
. . . 4
⊢ (𝜑 → (((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝐿)𝑁𝑋) = ((𝐿 ∘func 𝐹)𝑁𝑋)) |
| 27 | 10, 26 | eleqtrrd 2836 |
. . 3
⊢ (𝜑 → 𝐴 ∈ (((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝐿)𝑁𝑋)) |
| 28 | | eqid 2734 |
. . 3
⊢
(oppCat‘(𝐷
FuncCat 𝐸)) =
(oppCat‘(𝐷 FuncCat
𝐸)) |
| 29 | | eqid 2734 |
. . 3
⊢
(oppCat‘𝑆) =
(oppCat‘𝑆) |
| 30 | 2, 4, 6, 8, 9, 13,
22, 23, 27, 28, 29 | oppcup 49003 |
. 2
⊢ (𝜑 → (𝐿(〈(1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹)), tpos (2nd
‘(〈𝐷, 𝐸〉
−∘F 𝐹))〉((oppCat‘(𝐷 FuncCat 𝐸))UP(oppCat‘𝑆))𝑋)𝐴 ↔ ∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ (((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝑙)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(〈((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝑙), ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝐿)〉 ∙ 𝑋)((𝑙(2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))𝐿)‘𝑏)))) |
| 31 | 3 | fveq2i 6876 |
. . . 4
⊢
(oppCat‘𝑆) =
(oppCat‘(𝐶 FuncCat
𝐸)) |
| 32 | 28, 31, 21, 16 | ranval2 49366 |
. . 3
⊢ (𝜑 → (𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋) = (〈(1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹)), tpos (2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))〉((oppCat‘(𝐷 FuncCat 𝐸))UP(oppCat‘𝑆))𝑋)) |
| 33 | 32 | breqd 5128 |
. 2
⊢ (𝜑 → (𝐿(𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋)𝐴 ↔ 𝐿(〈(1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹)), tpos (2nd
‘(〈𝐷, 𝐸〉
−∘F 𝐹))〉((oppCat‘(𝐷 FuncCat 𝐸))UP(oppCat‘𝑆))𝑋)𝐴)) |
| 34 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) → 𝑙 ∈ (𝐷 Func 𝐸)) |
| 35 | | eqidd 2735 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) → (1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹)) = (1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))) |
| 36 | 34, 35 | prcof1 49161 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) → ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝑙) = (𝑙 ∘func 𝐹)) |
| 37 | 36 | eqcomd 2740 |
. . . . 5
⊢ ((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) → (𝑙 ∘func 𝐹) = ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝑙)) |
| 38 | 37 | oveq1d 7415 |
. . . 4
⊢ ((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) → ((𝑙 ∘func 𝐹)𝑁𝑋) = (((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝑙)𝑁𝑋)) |
| 39 | 36 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙 ∘func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝑙) = (𝑙 ∘func 𝐹)) |
| 40 | 25 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙 ∘func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝐿) = (𝐿 ∘func 𝐹)) |
| 41 | 39, 40 | opeq12d 4855 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙 ∘func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → 〈((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝑙), ((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝐿)〉 = 〈(𝑙 ∘func 𝐹), (𝐿 ∘func 𝐹)〉) |
| 42 | 41 | oveq1d 7415 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙 ∘func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → (〈((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝑙), ((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝐿)〉 ∙ 𝑋) = (〈(𝑙 ∘func 𝐹), (𝐿 ∘func 𝐹)〉 ∙ 𝑋)) |
| 43 | | eqidd 2735 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙 ∘func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → 𝐴 = 𝐴) |
| 44 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙 ∘func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → 𝑏 ∈ (𝑙𝑀𝐿)) |
| 45 | | eqidd 2735 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙 ∘func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → (2nd
‘(〈𝐷, 𝐸〉
−∘F 𝐹)) = (2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))) |
| 46 | 16 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙 ∘func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 47 | 5, 44, 45, 46 | prcof21a 49164 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙 ∘func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → ((𝑙(2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))𝐿)‘𝑏) = (𝑏 ∘ (1st ‘𝐹))) |
| 48 | 42, 43, 47 | oveq123d 7421 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙 ∘func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → (𝐴(〈((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝑙), ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝐿)〉 ∙ 𝑋)((𝑙(2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))𝐿)‘𝑏)) = (𝐴(〈(𝑙 ∘func 𝐹), (𝐿 ∘func 𝐹)〉 ∙ 𝑋)(𝑏 ∘ (1st ‘𝐹)))) |
| 49 | 48 | eqcomd 2740 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙 ∘func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → (𝐴(〈(𝑙 ∘func 𝐹), (𝐿 ∘func 𝐹)〉 ∙ 𝑋)(𝑏 ∘ (1st ‘𝐹))) = (𝐴(〈((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝑙), ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝐿)〉 ∙ 𝑋)((𝑙(2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))𝐿)‘𝑏))) |
| 50 | 49 | eqeq2d 2745 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙 ∘func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → (𝑎 = (𝐴(〈(𝑙 ∘func 𝐹), (𝐿 ∘func 𝐹)〉 ∙ 𝑋)(𝑏 ∘ (1st ‘𝐹))) ↔ 𝑎 = (𝐴(〈((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝑙), ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝐿)〉 ∙ 𝑋)((𝑙(2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))𝐿)‘𝑏)))) |
| 51 | 50 | reubidva 3373 |
. . . 4
⊢ (((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙 ∘func 𝐹)𝑁𝑋)) → (∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(〈(𝑙 ∘func 𝐹), (𝐿 ∘func 𝐹)〉 ∙ 𝑋)(𝑏 ∘ (1st ‘𝐹))) ↔ ∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(〈((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝑙), ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝐿)〉 ∙ 𝑋)((𝑙(2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))𝐿)‘𝑏)))) |
| 52 | 38, 51 | raleqbidva 3309 |
. . 3
⊢ ((𝜑 ∧ 𝑙 ∈ (𝐷 Func 𝐸)) → (∀𝑎 ∈ ((𝑙 ∘func 𝐹)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(〈(𝑙 ∘func 𝐹), (𝐿 ∘func 𝐹)〉 ∙ 𝑋)(𝑏 ∘ (1st ‘𝐹))) ↔ ∀𝑎 ∈ (((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝑙)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(〈((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝑙), ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝐿)〉 ∙ 𝑋)((𝑙(2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))𝐿)‘𝑏)))) |
| 53 | 52 | ralbidva 3159 |
. 2
⊢ (𝜑 → (∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ ((𝑙 ∘func 𝐹)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(〈(𝑙 ∘func 𝐹), (𝐿 ∘func 𝐹)〉 ∙ 𝑋)(𝑏 ∘ (1st ‘𝐹))) ↔ ∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ (((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝑙)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(〈((1st ‘(〈𝐷, 𝐸〉 −∘F
𝐹))‘𝑙), ((1st
‘(〈𝐷, 𝐸〉
−∘F 𝐹))‘𝐿)〉 ∙ 𝑋)((𝑙(2nd ‘(〈𝐷, 𝐸〉 −∘F
𝐹))𝐿)‘𝑏)))) |
| 54 | 30, 33, 53 | 3bitr4d 311 |
1
⊢ (𝜑 → (𝐿(𝐹(〈𝐶, 𝐷〉Ran𝐸)𝑋)𝐴 ↔ ∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ ((𝑙 ∘func 𝐹)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(〈(𝑙 ∘func 𝐹), (𝐿 ∘func 𝐹)〉 ∙ 𝑋)(𝑏 ∘ (1st ‘𝐹))))) |