Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ranup Structured version   Visualization version   GIF version

Theorem ranup 49377
Description: The universal property of the right Kan extension; expressed explicitly. (Contributed by Zhi Wang, 5-Nov-2025.)
Hypotheses
Ref Expression
lanup.s 𝑆 = (𝐶 FuncCat 𝐸)
lanup.m 𝑀 = (𝐷 Nat 𝐸)
lanup.n 𝑁 = (𝐶 Nat 𝐸)
lanup.x = (comp‘𝑆)
lanup.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
lanup.l (𝜑𝐿 ∈ (𝐷 Func 𝐸))
ranup.a (𝜑𝐴 ∈ ((𝐿func 𝐹)𝑁𝑋))
Assertion
Ref Expression
ranup (𝜑 → (𝐿(𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋)𝐴 ↔ ∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹)))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑙   𝐶,𝑎,𝑏,𝑙   𝐷,𝑎,𝑏,𝑙   𝐸,𝑎,𝑏,𝑙   𝐹,𝑎,𝑏,𝑙   𝐿,𝑎,𝑏,𝑙   𝑀,𝑏   𝑁,𝑎,𝑏   𝑆,𝑎,𝑏,𝑙   𝑋,𝑎,𝑏,𝑙   𝜑,𝑎,𝑏,𝑙
Allowed substitution hints:   (𝑎,𝑏,𝑙)   𝑀(𝑎,𝑙)   𝑁(𝑙)

Proof of Theorem ranup
StepHypRef Expression
1 eqid 2734 . . . 4 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
21fucbas 17963 . . 3 (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸))
3 lanup.s . . . 4 𝑆 = (𝐶 FuncCat 𝐸)
43fucbas 17963 . . 3 (𝐶 Func 𝐸) = (Base‘𝑆)
5 lanup.m . . . 4 𝑀 = (𝐷 Nat 𝐸)
61, 5fuchom 17964 . . 3 𝑀 = (Hom ‘(𝐷 FuncCat 𝐸))
7 lanup.n . . . 4 𝑁 = (𝐶 Nat 𝐸)
83, 7fuchom 17964 . . 3 𝑁 = (Hom ‘𝑆)
9 lanup.x . . 3 = (comp‘𝑆)
10 ranup.a . . . . 5 (𝜑𝐴 ∈ ((𝐿func 𝐹)𝑁𝑋))
117natrcl 17953 . . . . 5 (𝐴 ∈ ((𝐿func 𝐹)𝑁𝑋) → ((𝐿func 𝐹) ∈ (𝐶 Func 𝐸) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))
1210, 11syl 17 . . . 4 (𝜑 → ((𝐿func 𝐹) ∈ (𝐶 Func 𝐸) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))
1312simprd 495 . . 3 (𝜑𝑋 ∈ (𝐶 Func 𝐸))
1413func1st2nd 48936 . . . . 5 (𝜑 → (1st𝑋)(𝐶 Func 𝐸)(2nd𝑋))
1514funcrcl3 48938 . . . 4 (𝜑𝐸 ∈ Cat)
16 lanup.f . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
17 opex 5437 . . . . . . 7 𝐷, 𝐸⟩ ∈ V
1817a1i 11 . . . . . 6 (𝜑 → ⟨𝐷, 𝐸⟩ ∈ V)
1916, 18prcofelvv 49153 . . . . 5 (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) ∈ (V × V))
20 1st2nd2 8022 . . . . 5 ((⟨𝐷, 𝐸⟩ −∘F 𝐹) ∈ (V × V) → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)), (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))⟩)
2119, 20syl 17 . . . 4 (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)), (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))⟩)
221, 15, 3, 16, 21prcoffunca2 49160 . . 3 (𝜑 → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))((𝐷 FuncCat 𝐸) Func 𝑆)(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)))
23 lanup.l . . 3 (𝜑𝐿 ∈ (𝐷 Func 𝐸))
24 eqidd 2735 . . . . . 6 (𝜑 → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)))
2523, 24prcof1 49161 . . . . 5 (𝜑 → ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿) = (𝐿func 𝐹))
2625oveq1d 7415 . . . 4 (𝜑 → (((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)𝑁𝑋) = ((𝐿func 𝐹)𝑁𝑋))
2710, 26eleqtrrd 2836 . . 3 (𝜑𝐴 ∈ (((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)𝑁𝑋))
28 eqid 2734 . . 3 (oppCat‘(𝐷 FuncCat 𝐸)) = (oppCat‘(𝐷 FuncCat 𝐸))
29 eqid 2734 . . 3 (oppCat‘𝑆) = (oppCat‘𝑆)
302, 4, 6, 8, 9, 13, 22, 23, 27, 28, 29oppcup 49003 . 2 (𝜑 → (𝐿(⟨(1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)), tpos (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))⟩((oppCat‘(𝐷 FuncCat 𝐸))UP(oppCat‘𝑆))𝑋)𝐴 ↔ ∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ (((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏))))
313fveq2i 6876 . . . 4 (oppCat‘𝑆) = (oppCat‘(𝐶 FuncCat 𝐸))
3228, 31, 21, 16ranval2 49366 . . 3 (𝜑 → (𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋) = (⟨(1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)), tpos (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))⟩((oppCat‘(𝐷 FuncCat 𝐸))UP(oppCat‘𝑆))𝑋))
3332breqd 5128 . 2 (𝜑 → (𝐿(𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋)𝐴𝐿(⟨(1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)), tpos (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))⟩((oppCat‘(𝐷 FuncCat 𝐸))UP(oppCat‘𝑆))𝑋)𝐴))
34 simpr 484 . . . . . . 7 ((𝜑𝑙 ∈ (𝐷 Func 𝐸)) → 𝑙 ∈ (𝐷 Func 𝐸))
35 eqidd 2735 . . . . . . 7 ((𝜑𝑙 ∈ (𝐷 Func 𝐸)) → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)))
3634, 35prcof1 49161 . . . . . 6 ((𝜑𝑙 ∈ (𝐷 Func 𝐸)) → ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙) = (𝑙func 𝐹))
3736eqcomd 2740 . . . . 5 ((𝜑𝑙 ∈ (𝐷 Func 𝐸)) → (𝑙func 𝐹) = ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙))
3837oveq1d 7415 . . . 4 ((𝜑𝑙 ∈ (𝐷 Func 𝐸)) → ((𝑙func 𝐹)𝑁𝑋) = (((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙)𝑁𝑋))
3936ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙) = (𝑙func 𝐹))
4025ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿) = (𝐿func 𝐹))
4139, 40opeq12d 4855 . . . . . . . . 9 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → ⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ = ⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩)
4241oveq1d 7415 . . . . . . . 8 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → (⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋) = (⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋))
43 eqidd 2735 . . . . . . . 8 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → 𝐴 = 𝐴)
44 simpr 484 . . . . . . . . 9 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → 𝑏 ∈ (𝑙𝑀𝐿))
45 eqidd 2735 . . . . . . . . 9 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)))
4616ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → 𝐹 ∈ (𝐶 Func 𝐷))
475, 44, 45, 46prcof21a 49164 . . . . . . . 8 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → ((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏) = (𝑏 ∘ (1st𝐹)))
4842, 43, 47oveq123d 7421 . . . . . . 7 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏)) = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹))))
4948eqcomd 2740 . . . . . 6 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹))) = (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏)))
5049eqeq2d 2745 . . . . 5 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → (𝑎 = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹))) ↔ 𝑎 = (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏))))
5150reubidva 3373 . . . 4 (((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) → (∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹))) ↔ ∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏))))
5238, 51raleqbidva 3309 . . 3 ((𝜑𝑙 ∈ (𝐷 Func 𝐸)) → (∀𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹))) ↔ ∀𝑎 ∈ (((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏))))
5352ralbidva 3159 . 2 (𝜑 → (∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹))) ↔ ∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ (((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏))))
5430, 33, 533bitr4d 311 1 (𝜑 → (𝐿(𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋)𝐴 ↔ ∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  ∃!wreu 3355  Vcvv 3457  cop 4605   class class class wbr 5117   × cxp 5650  ccom 5656  cfv 6528  (class class class)co 7400  1st c1st 7981  2nd c2nd 7982  tpos ctpos 8219  compcco 17270  oppCatcoppc 17710   Func cfunc 17854  func ccofu 17856   Nat cnat 17944   FuncCat cfuc 17945  UPcup 48974   −∘F cprcof 49147  Rancran 49344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-tpos 8220  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-er 8714  df-map 8837  df-ixp 8907  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-z 12582  df-dec 12702  df-uz 12846  df-fz 13515  df-struct 17153  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-hom 17282  df-cco 17283  df-cat 17667  df-cid 17668  df-oppc 17711  df-func 17858  df-cofu 17860  df-nat 17946  df-fuc 17947  df-xpc 18171  df-curf 18213  df-oppf 48951  df-up 48975  df-swapf 49040  df-fuco 49091  df-prcof 49148  df-ran 49346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator