Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ranup Structured version   Visualization version   GIF version

Theorem ranup 49753
Description: The universal property of the right Kan extension; expressed explicitly. (Contributed by Zhi Wang, 5-Nov-2025.)
Hypotheses
Ref Expression
lanup.s 𝑆 = (𝐶 FuncCat 𝐸)
lanup.m 𝑀 = (𝐷 Nat 𝐸)
lanup.n 𝑁 = (𝐶 Nat 𝐸)
lanup.x = (comp‘𝑆)
lanup.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
lanup.l (𝜑𝐿 ∈ (𝐷 Func 𝐸))
ranup.a (𝜑𝐴 ∈ ((𝐿func 𝐹)𝑁𝑋))
Assertion
Ref Expression
ranup (𝜑 → (𝐿(𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋)𝐴 ↔ ∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹)))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑙   𝐶,𝑎,𝑏,𝑙   𝐷,𝑎,𝑏,𝑙   𝐸,𝑎,𝑏,𝑙   𝐹,𝑎,𝑏,𝑙   𝐿,𝑎,𝑏,𝑙   𝑀,𝑏   𝑁,𝑎,𝑏   𝑆,𝑎,𝑏,𝑙   𝑋,𝑎,𝑏,𝑙   𝜑,𝑎,𝑏,𝑙
Allowed substitution hints:   (𝑎,𝑏,𝑙)   𝑀(𝑎,𝑙)   𝑁(𝑙)

Proof of Theorem ranup
StepHypRef Expression
1 eqid 2731 . . . 4 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
21fucbas 17870 . . 3 (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸))
3 lanup.s . . . 4 𝑆 = (𝐶 FuncCat 𝐸)
43fucbas 17870 . . 3 (𝐶 Func 𝐸) = (Base‘𝑆)
5 lanup.m . . . 4 𝑀 = (𝐷 Nat 𝐸)
61, 5fuchom 17871 . . 3 𝑀 = (Hom ‘(𝐷 FuncCat 𝐸))
7 lanup.n . . . 4 𝑁 = (𝐶 Nat 𝐸)
83, 7fuchom 17871 . . 3 𝑁 = (Hom ‘𝑆)
9 lanup.x . . 3 = (comp‘𝑆)
10 ranup.a . . . . 5 (𝜑𝐴 ∈ ((𝐿func 𝐹)𝑁𝑋))
117natrcl 17860 . . . . 5 (𝐴 ∈ ((𝐿func 𝐹)𝑁𝑋) → ((𝐿func 𝐹) ∈ (𝐶 Func 𝐸) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))
1210, 11syl 17 . . . 4 (𝜑 → ((𝐿func 𝐹) ∈ (𝐶 Func 𝐸) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))
1312simprd 495 . . 3 (𝜑𝑋 ∈ (𝐶 Func 𝐸))
1413func1st2nd 49187 . . . . 5 (𝜑 → (1st𝑋)(𝐶 Func 𝐸)(2nd𝑋))
1514funcrcl3 49191 . . . 4 (𝜑𝐸 ∈ Cat)
16 lanup.f . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
17 opex 5402 . . . . . . 7 𝐷, 𝐸⟩ ∈ V
1817a1i 11 . . . . . 6 (𝜑 → ⟨𝐷, 𝐸⟩ ∈ V)
1916, 18prcofelvv 49491 . . . . 5 (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) ∈ (V × V))
20 1st2nd2 7960 . . . . 5 ((⟨𝐷, 𝐸⟩ −∘F 𝐹) ∈ (V × V) → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)), (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))⟩)
2119, 20syl 17 . . . 4 (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)), (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))⟩)
221, 15, 3, 16, 21prcoffunca2 49498 . . 3 (𝜑 → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))((𝐷 FuncCat 𝐸) Func 𝑆)(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)))
23 lanup.l . . 3 (𝜑𝐿 ∈ (𝐷 Func 𝐸))
24 eqidd 2732 . . . . . 6 (𝜑 → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)))
2523, 24prcof1 49499 . . . . 5 (𝜑 → ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿) = (𝐿func 𝐹))
2625oveq1d 7361 . . . 4 (𝜑 → (((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)𝑁𝑋) = ((𝐿func 𝐹)𝑁𝑋))
2710, 26eleqtrrd 2834 . . 3 (𝜑𝐴 ∈ (((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)𝑁𝑋))
28 eqid 2731 . . 3 (oppCat‘(𝐷 FuncCat 𝐸)) = (oppCat‘(𝐷 FuncCat 𝐸))
29 eqid 2731 . . 3 (oppCat‘𝑆) = (oppCat‘𝑆)
302, 4, 6, 8, 9, 13, 22, 23, 27, 28, 29oppcup 49318 . 2 (𝜑 → (𝐿(⟨(1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)), tpos (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))⟩((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘𝑆))𝑋)𝐴 ↔ ∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ (((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏))))
313fveq2i 6825 . . . 4 (oppCat‘𝑆) = (oppCat‘(𝐶 FuncCat 𝐸))
3228, 31, 21, 16ranval2 49741 . . 3 (𝜑 → (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) = (⟨(1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)), tpos (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))⟩((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘𝑆))𝑋))
3332breqd 5100 . 2 (𝜑 → (𝐿(𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋)𝐴𝐿(⟨(1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)), tpos (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))⟩((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘𝑆))𝑋)𝐴))
34 simpr 484 . . . . . . 7 ((𝜑𝑙 ∈ (𝐷 Func 𝐸)) → 𝑙 ∈ (𝐷 Func 𝐸))
35 eqidd 2732 . . . . . . 7 ((𝜑𝑙 ∈ (𝐷 Func 𝐸)) → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)))
3634, 35prcof1 49499 . . . . . 6 ((𝜑𝑙 ∈ (𝐷 Func 𝐸)) → ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙) = (𝑙func 𝐹))
3736eqcomd 2737 . . . . 5 ((𝜑𝑙 ∈ (𝐷 Func 𝐸)) → (𝑙func 𝐹) = ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙))
3837oveq1d 7361 . . . 4 ((𝜑𝑙 ∈ (𝐷 Func 𝐸)) → ((𝑙func 𝐹)𝑁𝑋) = (((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙)𝑁𝑋))
3936ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙) = (𝑙func 𝐹))
4025ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿) = (𝐿func 𝐹))
4139, 40opeq12d 4830 . . . . . . . . 9 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → ⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ = ⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩)
4241oveq1d 7361 . . . . . . . 8 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → (⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋) = (⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋))
43 eqidd 2732 . . . . . . . 8 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → 𝐴 = 𝐴)
44 simpr 484 . . . . . . . . 9 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → 𝑏 ∈ (𝑙𝑀𝐿))
45 eqidd 2732 . . . . . . . . 9 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)))
4616ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → 𝐹 ∈ (𝐶 Func 𝐷))
475, 44, 45, 46prcof21a 49502 . . . . . . . 8 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → ((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏) = (𝑏 ∘ (1st𝐹)))
4842, 43, 47oveq123d 7367 . . . . . . 7 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏)) = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹))))
4948eqcomd 2737 . . . . . 6 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹))) = (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏)))
5049eqeq2d 2742 . . . . 5 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → (𝑎 = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹))) ↔ 𝑎 = (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏))))
5150reubidva 3360 . . . 4 (((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) → (∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹))) ↔ ∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏))))
5238, 51raleqbidva 3298 . . 3 ((𝜑𝑙 ∈ (𝐷 Func 𝐸)) → (∀𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹))) ↔ ∀𝑎 ∈ (((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏))))
5352ralbidva 3153 . 2 (𝜑 → (∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹))) ↔ ∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ (((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏))))
5430, 33, 533bitr4d 311 1 (𝜑 → (𝐿(𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋)𝐴 ↔ ∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  ∃!wreu 3344  Vcvv 3436  cop 4579   class class class wbr 5089   × cxp 5612  ccom 5618  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  tpos ctpos 8155  compcco 17173  oppCatcoppc 17617   Func cfunc 17761  func ccofu 17763   Nat cnat 17851   FuncCat cfuc 17852   UP cup 49284   −∘F cprcof 49484   Ran cran 49717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575  df-oppc 17618  df-func 17765  df-cofu 17767  df-nat 17853  df-fuc 17854  df-xpc 18078  df-curf 18120  df-oppf 49234  df-up 49285  df-swapf 49371  df-fuco 49428  df-prcof 49485  df-ran 49719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator