Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ranup Structured version   Visualization version   GIF version

Theorem ranup 49621
Description: The universal property of the right Kan extension; expressed explicitly. (Contributed by Zhi Wang, 5-Nov-2025.)
Hypotheses
Ref Expression
lanup.s 𝑆 = (𝐶 FuncCat 𝐸)
lanup.m 𝑀 = (𝐷 Nat 𝐸)
lanup.n 𝑁 = (𝐶 Nat 𝐸)
lanup.x = (comp‘𝑆)
lanup.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
lanup.l (𝜑𝐿 ∈ (𝐷 Func 𝐸))
ranup.a (𝜑𝐴 ∈ ((𝐿func 𝐹)𝑁𝑋))
Assertion
Ref Expression
ranup (𝜑 → (𝐿(𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋)𝐴 ↔ ∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹)))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑙   𝐶,𝑎,𝑏,𝑙   𝐷,𝑎,𝑏,𝑙   𝐸,𝑎,𝑏,𝑙   𝐹,𝑎,𝑏,𝑙   𝐿,𝑎,𝑏,𝑙   𝑀,𝑏   𝑁,𝑎,𝑏   𝑆,𝑎,𝑏,𝑙   𝑋,𝑎,𝑏,𝑙   𝜑,𝑎,𝑏,𝑙
Allowed substitution hints:   (𝑎,𝑏,𝑙)   𝑀(𝑎,𝑙)   𝑁(𝑙)

Proof of Theorem ranup
StepHypRef Expression
1 eqid 2730 . . . 4 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
21fucbas 17931 . . 3 (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸))
3 lanup.s . . . 4 𝑆 = (𝐶 FuncCat 𝐸)
43fucbas 17931 . . 3 (𝐶 Func 𝐸) = (Base‘𝑆)
5 lanup.m . . . 4 𝑀 = (𝐷 Nat 𝐸)
61, 5fuchom 17932 . . 3 𝑀 = (Hom ‘(𝐷 FuncCat 𝐸))
7 lanup.n . . . 4 𝑁 = (𝐶 Nat 𝐸)
83, 7fuchom 17932 . . 3 𝑁 = (Hom ‘𝑆)
9 lanup.x . . 3 = (comp‘𝑆)
10 ranup.a . . . . 5 (𝜑𝐴 ∈ ((𝐿func 𝐹)𝑁𝑋))
117natrcl 17921 . . . . 5 (𝐴 ∈ ((𝐿func 𝐹)𝑁𝑋) → ((𝐿func 𝐹) ∈ (𝐶 Func 𝐸) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))
1210, 11syl 17 . . . 4 (𝜑 → ((𝐿func 𝐹) ∈ (𝐶 Func 𝐸) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))
1312simprd 495 . . 3 (𝜑𝑋 ∈ (𝐶 Func 𝐸))
1413func1st2nd 49055 . . . . 5 (𝜑 → (1st𝑋)(𝐶 Func 𝐸)(2nd𝑋))
1514funcrcl3 49059 . . . 4 (𝜑𝐸 ∈ Cat)
16 lanup.f . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
17 opex 5426 . . . . . . 7 𝐷, 𝐸⟩ ∈ V
1817a1i 11 . . . . . 6 (𝜑 → ⟨𝐷, 𝐸⟩ ∈ V)
1916, 18prcofelvv 49359 . . . . 5 (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) ∈ (V × V))
20 1st2nd2 8009 . . . . 5 ((⟨𝐷, 𝐸⟩ −∘F 𝐹) ∈ (V × V) → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)), (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))⟩)
2119, 20syl 17 . . . 4 (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)), (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))⟩)
221, 15, 3, 16, 21prcoffunca2 49366 . . 3 (𝜑 → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))((𝐷 FuncCat 𝐸) Func 𝑆)(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)))
23 lanup.l . . 3 (𝜑𝐿 ∈ (𝐷 Func 𝐸))
24 eqidd 2731 . . . . . 6 (𝜑 → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)))
2523, 24prcof1 49367 . . . . 5 (𝜑 → ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿) = (𝐿func 𝐹))
2625oveq1d 7404 . . . 4 (𝜑 → (((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)𝑁𝑋) = ((𝐿func 𝐹)𝑁𝑋))
2710, 26eleqtrrd 2832 . . 3 (𝜑𝐴 ∈ (((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)𝑁𝑋))
28 eqid 2730 . . 3 (oppCat‘(𝐷 FuncCat 𝐸)) = (oppCat‘(𝐷 FuncCat 𝐸))
29 eqid 2730 . . 3 (oppCat‘𝑆) = (oppCat‘𝑆)
302, 4, 6, 8, 9, 13, 22, 23, 27, 28, 29oppcup 49186 . 2 (𝜑 → (𝐿(⟨(1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)), tpos (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))⟩((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘𝑆))𝑋)𝐴 ↔ ∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ (((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏))))
313fveq2i 6863 . . . 4 (oppCat‘𝑆) = (oppCat‘(𝐶 FuncCat 𝐸))
3228, 31, 21, 16ranval2 49609 . . 3 (𝜑 → (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) = (⟨(1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)), tpos (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))⟩((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘𝑆))𝑋))
3332breqd 5120 . 2 (𝜑 → (𝐿(𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋)𝐴𝐿(⟨(1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)), tpos (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))⟩((oppCat‘(𝐷 FuncCat 𝐸)) UP (oppCat‘𝑆))𝑋)𝐴))
34 simpr 484 . . . . . . 7 ((𝜑𝑙 ∈ (𝐷 Func 𝐸)) → 𝑙 ∈ (𝐷 Func 𝐸))
35 eqidd 2731 . . . . . . 7 ((𝜑𝑙 ∈ (𝐷 Func 𝐸)) → (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)))
3634, 35prcof1 49367 . . . . . 6 ((𝜑𝑙 ∈ (𝐷 Func 𝐸)) → ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙) = (𝑙func 𝐹))
3736eqcomd 2736 . . . . 5 ((𝜑𝑙 ∈ (𝐷 Func 𝐸)) → (𝑙func 𝐹) = ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙))
3837oveq1d 7404 . . . 4 ((𝜑𝑙 ∈ (𝐷 Func 𝐸)) → ((𝑙func 𝐹)𝑁𝑋) = (((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙)𝑁𝑋))
3936ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙) = (𝑙func 𝐹))
4025ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿) = (𝐿func 𝐹))
4139, 40opeq12d 4847 . . . . . . . . 9 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → ⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ = ⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩)
4241oveq1d 7404 . . . . . . . 8 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → (⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋) = (⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋))
43 eqidd 2731 . . . . . . . 8 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → 𝐴 = 𝐴)
44 simpr 484 . . . . . . . . 9 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → 𝑏 ∈ (𝑙𝑀𝐿))
45 eqidd 2731 . . . . . . . . 9 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)))
4616ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → 𝐹 ∈ (𝐶 Func 𝐷))
475, 44, 45, 46prcof21a 49370 . . . . . . . 8 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → ((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏) = (𝑏 ∘ (1st𝐹)))
4842, 43, 47oveq123d 7410 . . . . . . 7 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏)) = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹))))
4948eqcomd 2736 . . . . . 6 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹))) = (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏)))
5049eqeq2d 2741 . . . . 5 ((((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) ∧ 𝑏 ∈ (𝑙𝑀𝐿)) → (𝑎 = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹))) ↔ 𝑎 = (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏))))
5150reubidva 3372 . . . 4 (((𝜑𝑙 ∈ (𝐷 Func 𝐸)) ∧ 𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)) → (∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹))) ↔ ∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏))))
5238, 51raleqbidva 3307 . . 3 ((𝜑𝑙 ∈ (𝐷 Func 𝐸)) → (∀𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹))) ↔ ∀𝑎 ∈ (((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏))))
5352ralbidva 3155 . 2 (𝜑 → (∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹))) ↔ ∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ (((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝑙), ((1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))‘𝐿)⟩ 𝑋)((𝑙(2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))𝐿)‘𝑏))))
5430, 33, 533bitr4d 311 1 (𝜑 → (𝐿(𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋)𝐴 ↔ ∀𝑙 ∈ (𝐷 Func 𝐸)∀𝑎 ∈ ((𝑙func 𝐹)𝑁𝑋)∃!𝑏 ∈ (𝑙𝑀𝐿)𝑎 = (𝐴(⟨(𝑙func 𝐹), (𝐿func 𝐹)⟩ 𝑋)(𝑏 ∘ (1st𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  ∃!wreu 3354  Vcvv 3450  cop 4597   class class class wbr 5109   × cxp 5638  ccom 5644  cfv 6513  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969  tpos ctpos 8206  compcco 17238  oppCatcoppc 17678   Func cfunc 17822  func ccofu 17824   Nat cnat 17912   FuncCat cfuc 17913   UP cup 49152   −∘F cprcof 49352   Ran cran 49585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-cat 17635  df-cid 17636  df-oppc 17679  df-func 17826  df-cofu 17828  df-nat 17914  df-fuc 17915  df-xpc 18139  df-curf 18181  df-oppf 49102  df-up 49153  df-swapf 49239  df-fuco 49296  df-prcof 49353  df-ran 49587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator