![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psmetge0 | Structured version Visualization version GIF version |
Description: The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
Ref | Expression |
---|---|
psmetge0 | β’ ((π· β (PsMetβπ) β§ π΄ β π β§ π΅ β π) β 0 β€ (π΄π·π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . . 4 β’ ((π· β (PsMetβπ) β§ π΄ β π β§ π΅ β π) β π· β (PsMetβπ)) | |
2 | simp2 1137 | . . . 4 β’ ((π· β (PsMetβπ) β§ π΄ β π β§ π΅ β π) β π΄ β π) | |
3 | simp3 1138 | . . . 4 β’ ((π· β (PsMetβπ) β§ π΄ β π β§ π΅ β π) β π΅ β π) | |
4 | psmettri2 23806 | . . . 4 β’ ((π· β (PsMetβπ) β§ (π΄ β π β§ π΅ β π β§ π΅ β π)) β (π΅π·π΅) β€ ((π΄π·π΅) +π (π΄π·π΅))) | |
5 | 1, 2, 3, 3, 4 | syl13anc 1372 | . . 3 β’ ((π· β (PsMetβπ) β§ π΄ β π β§ π΅ β π) β (π΅π·π΅) β€ ((π΄π·π΅) +π (π΄π·π΅))) |
6 | 2re 12282 | . . . . 5 β’ 2 β β | |
7 | rexr 11256 | . . . . 5 β’ (2 β β β 2 β β*) | |
8 | xmul01 13242 | . . . . 5 β’ (2 β β* β (2 Β·e 0) = 0) | |
9 | 6, 7, 8 | mp2b 10 | . . . 4 β’ (2 Β·e 0) = 0 |
10 | psmet0 23805 | . . . . 5 β’ ((π· β (PsMetβπ) β§ π΅ β π) β (π΅π·π΅) = 0) | |
11 | 10 | 3adant2 1131 | . . . 4 β’ ((π· β (PsMetβπ) β§ π΄ β π β§ π΅ β π) β (π΅π·π΅) = 0) |
12 | 9, 11 | eqtr4id 2791 | . . 3 β’ ((π· β (PsMetβπ) β§ π΄ β π β§ π΅ β π) β (2 Β·e 0) = (π΅π·π΅)) |
13 | psmetcl 23804 | . . . 4 β’ ((π· β (PsMetβπ) β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) β β*) | |
14 | x2times 13274 | . . . 4 β’ ((π΄π·π΅) β β* β (2 Β·e (π΄π·π΅)) = ((π΄π·π΅) +π (π΄π·π΅))) | |
15 | 13, 14 | syl 17 | . . 3 β’ ((π· β (PsMetβπ) β§ π΄ β π β§ π΅ β π) β (2 Β·e (π΄π·π΅)) = ((π΄π·π΅) +π (π΄π·π΅))) |
16 | 5, 12, 15 | 3brtr4d 5179 | . 2 β’ ((π· β (PsMetβπ) β§ π΄ β π β§ π΅ β π) β (2 Β·e 0) β€ (2 Β·e (π΄π·π΅))) |
17 | 0xr 11257 | . . 3 β’ 0 β β* | |
18 | 2rp 12975 | . . . 4 β’ 2 β β+ | |
19 | 18 | a1i 11 | . . 3 β’ ((π· β (PsMetβπ) β§ π΄ β π β§ π΅ β π) β 2 β β+) |
20 | xlemul2 13266 | . . 3 β’ ((0 β β* β§ (π΄π·π΅) β β* β§ 2 β β+) β (0 β€ (π΄π·π΅) β (2 Β·e 0) β€ (2 Β·e (π΄π·π΅)))) | |
21 | 17, 13, 19, 20 | mp3an2i 1466 | . 2 β’ ((π· β (PsMetβπ) β§ π΄ β π β§ π΅ β π) β (0 β€ (π΄π·π΅) β (2 Β·e 0) β€ (2 Β·e (π΄π·π΅)))) |
22 | 16, 21 | mpbird 256 | 1 β’ ((π· β (PsMetβπ) β§ π΄ β π β§ π΅ β π) β 0 β€ (π΄π·π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1087 = wceq 1541 β wcel 2106 class class class wbr 5147 βcfv 6540 (class class class)co 7405 βcr 11105 0cc0 11106 β*cxr 11243 β€ cle 11245 2c2 12263 β+crp 12970 +π cxad 13086 Β·e cxmu 13087 PsMetcpsmet 20920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-2 12271 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-psmet 20928 |
This theorem is referenced by: psmetxrge0 23810 psmetlecl 23812 distspace 23813 xblpnfps 23892 xblss2ps 23898 metustexhalf 24056 blval2 24062 metuel2 24065 metider 32862 |
Copyright terms: Public domain | W3C validator |