![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psmetge0 | Structured version Visualization version GIF version |
Description: The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
Ref | Expression |
---|---|
psmetge0 | ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐷 ∈ (PsMet‘𝑋)) | |
2 | simp2 1136 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
3 | simp3 1137 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
4 | psmettri2 24335 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐵𝐷𝐵) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵))) | |
5 | 1, 2, 3, 3, 4 | syl13anc 1371 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐷𝐵) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵))) |
6 | 2re 12338 | . . . . 5 ⊢ 2 ∈ ℝ | |
7 | rexr 11305 | . . . . 5 ⊢ (2 ∈ ℝ → 2 ∈ ℝ*) | |
8 | xmul01 13306 | . . . . 5 ⊢ (2 ∈ ℝ* → (2 ·e 0) = 0) | |
9 | 6, 7, 8 | mp2b 10 | . . . 4 ⊢ (2 ·e 0) = 0 |
10 | psmet0 24334 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵 ∈ 𝑋) → (𝐵𝐷𝐵) = 0) | |
11 | 10 | 3adant2 1130 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐷𝐵) = 0) |
12 | 9, 11 | eqtr4id 2794 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (2 ·e 0) = (𝐵𝐷𝐵)) |
13 | psmetcl 24333 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | |
14 | x2times 13338 | . . . 4 ⊢ ((𝐴𝐷𝐵) ∈ ℝ* → (2 ·e (𝐴𝐷𝐵)) = ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵))) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (2 ·e (𝐴𝐷𝐵)) = ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐵))) |
16 | 5, 12, 15 | 3brtr4d 5180 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (2 ·e 0) ≤ (2 ·e (𝐴𝐷𝐵))) |
17 | 0xr 11306 | . . 3 ⊢ 0 ∈ ℝ* | |
18 | 2rp 13037 | . . . 4 ⊢ 2 ∈ ℝ+ | |
19 | 18 | a1i 11 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 2 ∈ ℝ+) |
20 | xlemul2 13330 | . . 3 ⊢ ((0 ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ* ∧ 2 ∈ ℝ+) → (0 ≤ (𝐴𝐷𝐵) ↔ (2 ·e 0) ≤ (2 ·e (𝐴𝐷𝐵)))) | |
21 | 17, 13, 19, 20 | mp3an2i 1465 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (0 ≤ (𝐴𝐷𝐵) ↔ (2 ·e 0) ≤ (2 ·e (𝐴𝐷𝐵)))) |
22 | 16, 21 | mpbird 257 | 1 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 0cc0 11153 ℝ*cxr 11292 ≤ cle 11294 2c2 12319 ℝ+crp 13032 +𝑒 cxad 13150 ·e cxmu 13151 PsMetcpsmet 21366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-2 12327 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-psmet 21374 |
This theorem is referenced by: psmetxrge0 24339 psmetlecl 24341 distspace 24342 xblpnfps 24421 xblss2ps 24427 metustexhalf 24585 blval2 24591 metuel2 24594 metider 33855 |
Copyright terms: Public domain | W3C validator |