Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psmetsym | Structured version Visualization version GIF version |
Description: The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
Ref | Expression |
---|---|
psmetsym | ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psmetcl 23540 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | |
2 | psmetcl 23540 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵𝐷𝐴) ∈ ℝ*) | |
3 | 2 | 3com23 1125 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐷𝐴) ∈ ℝ*) |
4 | simp1 1135 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐷 ∈ (PsMet‘𝑋)) | |
5 | simp3 1137 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
6 | simp2 1136 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
7 | psmettri2 23542 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵))) | |
8 | 4, 5, 6, 5, 7 | syl13anc 1371 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵))) |
9 | psmet0 23541 | . . . . . 6 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵 ∈ 𝑋) → (𝐵𝐷𝐵) = 0) | |
10 | 9 | 3adant2 1130 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐷𝐵) = 0) |
11 | 10 | oveq2d 7332 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)) = ((𝐵𝐷𝐴) +𝑒 0)) |
12 | 2 | xaddid1d 13056 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐵𝐷𝐴) +𝑒 0) = (𝐵𝐷𝐴)) |
13 | 12 | 3com23 1125 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐵𝐷𝐴) +𝑒 0) = (𝐵𝐷𝐴)) |
14 | 11, 13 | eqtrd 2776 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)) = (𝐵𝐷𝐴)) |
15 | 8, 14 | breqtrd 5112 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ≤ (𝐵𝐷𝐴)) |
16 | psmettri2 23542 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐵𝐷𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴))) | |
17 | 4, 6, 5, 6, 16 | syl13anc 1371 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐷𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴))) |
18 | psmet0 23541 | . . . . . 6 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) | |
19 | 18 | 3adant3 1131 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) |
20 | 19 | oveq2d 7332 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)) = ((𝐴𝐷𝐵) +𝑒 0)) |
21 | 1 | xaddid1d 13056 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵)) |
22 | 20, 21 | eqtrd 2776 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)) = (𝐴𝐷𝐵)) |
23 | 17, 22 | breqtrd 5112 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐷𝐴) ≤ (𝐴𝐷𝐵)) |
24 | 1, 3, 15, 23 | xrletrid 12968 | 1 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 class class class wbr 5086 ‘cfv 6465 (class class class)co 7316 0cc0 10950 ℝ*cxr 11087 ≤ cle 11089 +𝑒 cxad 12925 PsMetcpsmet 20661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-po 5520 df-so 5521 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7319 df-oprab 7320 df-mpo 7321 df-er 8547 df-map 8666 df-en 8783 df-dom 8784 df-sdom 8785 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-xadd 12928 df-psmet 20669 |
This theorem is referenced by: psmettri 23544 distspace 23549 elbl3ps 23624 blssps 23657 metustsym 23791 metideq 31979 metider 31980 |
Copyright terms: Public domain | W3C validator |