MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psmetsym Structured version   Visualization version   GIF version

Theorem psmetsym 24254
Description: The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
psmetsym ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))

Proof of Theorem psmetsym
StepHypRef Expression
1 psmetcl 24251 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
2 psmetcl 24251 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐷𝐴) ∈ ℝ*)
323com23 1126 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐴) ∈ ℝ*)
4 simp1 1136 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐷 ∈ (PsMet‘𝑋))
5 simp3 1138 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
6 simp2 1137 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
7 psmettri2 24253 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐵𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)))
84, 5, 6, 5, 7syl13anc 1374 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)))
9 psmet0 24252 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝑋) → (𝐵𝐷𝐵) = 0)
1093adant2 1131 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐵) = 0)
1110oveq2d 7426 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)) = ((𝐵𝐷𝐴) +𝑒 0))
122xaddridd 13264 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → ((𝐵𝐷𝐴) +𝑒 0) = (𝐵𝐷𝐴))
13123com23 1126 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐷𝐴) +𝑒 0) = (𝐵𝐷𝐴))
1411, 13eqtrd 2771 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)) = (𝐵𝐷𝐴))
158, 14breqtrd 5150 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ≤ (𝐵𝐷𝐴))
16 psmettri2 24253 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑋)) → (𝐵𝐷𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)))
174, 6, 5, 6, 16syl13anc 1374 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)))
18 psmet0 24252 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
19183adant3 1132 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐴) = 0)
2019oveq2d 7426 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)) = ((𝐴𝐷𝐵) +𝑒 0))
211xaddridd 13264 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵))
2220, 21eqtrd 2771 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)) = (𝐴𝐷𝐵))
2317, 22breqtrd 5150 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐴) ≤ (𝐴𝐷𝐵))
241, 3, 15, 23xrletrid 13176 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  0cc0 11134  *cxr 11273  cle 11275   +𝑒 cxad 13131  PsMetcpsmet 21304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-xadd 13134  df-psmet 21312
This theorem is referenced by:  psmettri  24255  distspace  24260  elbl3ps  24335  blssps  24368  metustsym  24499  metideq  33929  metider  33930
  Copyright terms: Public domain W3C validator