MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psmettri2 Structured version   Visualization version   GIF version

Theorem psmettri2 22913
Description: Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
psmettri2 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))

Proof of Theorem psmettri2
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6698 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
2 ispsmet 22908 . . . . . . . 8 (𝑋 ∈ V → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))))
31, 2syl 17 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))))
43ibi 269 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))
54simprd 498 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
65r19.21bi 3208 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) → ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
76simprd 498 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) → ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
87ralrimiva 3182 . 2 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎𝑋𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
9 oveq1 7157 . . . . 5 (𝑎 = 𝐴 → (𝑎𝐷𝑏) = (𝐴𝐷𝑏))
10 oveq2 7158 . . . . . 6 (𝑎 = 𝐴 → (𝑐𝐷𝑎) = (𝑐𝐷𝐴))
1110oveq1d 7165 . . . . 5 (𝑎 = 𝐴 → ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) = ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝑏)))
129, 11breq12d 5072 . . . 4 (𝑎 = 𝐴 → ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ↔ (𝐴𝐷𝑏) ≤ ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝑏))))
13 oveq2 7158 . . . . 5 (𝑏 = 𝐵 → (𝐴𝐷𝑏) = (𝐴𝐷𝐵))
14 oveq2 7158 . . . . . 6 (𝑏 = 𝐵 → (𝑐𝐷𝑏) = (𝑐𝐷𝐵))
1514oveq2d 7166 . . . . 5 (𝑏 = 𝐵 → ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝑏)) = ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝐵)))
1613, 15breq12d 5072 . . . 4 (𝑏 = 𝐵 → ((𝐴𝐷𝑏) ≤ ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝑏)) ↔ (𝐴𝐷𝐵) ≤ ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝐵))))
17 oveq1 7157 . . . . . 6 (𝑐 = 𝐶 → (𝑐𝐷𝐴) = (𝐶𝐷𝐴))
18 oveq1 7157 . . . . . 6 (𝑐 = 𝐶 → (𝑐𝐷𝐵) = (𝐶𝐷𝐵))
1917, 18oveq12d 7168 . . . . 5 (𝑐 = 𝐶 → ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝐵)) = ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
2019breq2d 5071 . . . 4 (𝑐 = 𝐶 → ((𝐴𝐷𝐵) ≤ ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝐵)) ↔ (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
2112, 16, 20rspc3v 3636 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (∀𝑎𝑋𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
22213comr 1121 . 2 ((𝐶𝑋𝐴𝑋𝐵𝑋) → (∀𝑎𝑋𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
238, 22mpan9 509 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  Vcvv 3495   class class class wbr 5059   × cxp 5548  wf 6346  cfv 6350  (class class class)co 7150  0cc0 10531  *cxr 10668  cle 10670   +𝑒 cxad 12499  PsMetcpsmet 20523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8402  df-xr 10673  df-psmet 20531
This theorem is referenced by:  psmetsym  22914  psmettri  22915  psmetge0  22916  psmetres2  22918  xblss2ps  23005  metideq  31128  metider  31129  pstmxmet  31132
  Copyright terms: Public domain W3C validator