Step | Hyp | Ref
| Expression |
1 | | elfvex 6750 |
. . . . . . . 8
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V) |
2 | | ispsmet 23202 |
. . . . . . . 8
⊢ (𝑋 ∈ V → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑎 ∈ 𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))) |
3 | 1, 2 | syl 17 |
. . . . . . 7
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑎 ∈ 𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))) |
4 | 3 | ibi 270 |
. . . . . 6
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑎 ∈ 𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))) |
5 | 4 | simprd 499 |
. . . . 5
⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎 ∈ 𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))) |
6 | 5 | r19.21bi 3130 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) → ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))) |
7 | 6 | simprd 499 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ 𝑋) → ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
8 | 7 | ralrimiva 3105 |
. 2
⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) |
9 | | oveq1 7220 |
. . . . 5
⊢ (𝑎 = 𝐴 → (𝑎𝐷𝑏) = (𝐴𝐷𝑏)) |
10 | | oveq2 7221 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (𝑐𝐷𝑎) = (𝑐𝐷𝐴)) |
11 | 10 | oveq1d 7228 |
. . . . 5
⊢ (𝑎 = 𝐴 → ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) = ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝑏))) |
12 | 9, 11 | breq12d 5066 |
. . . 4
⊢ (𝑎 = 𝐴 → ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ↔ (𝐴𝐷𝑏) ≤ ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝑏)))) |
13 | | oveq2 7221 |
. . . . 5
⊢ (𝑏 = 𝐵 → (𝐴𝐷𝑏) = (𝐴𝐷𝐵)) |
14 | | oveq2 7221 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (𝑐𝐷𝑏) = (𝑐𝐷𝐵)) |
15 | 14 | oveq2d 7229 |
. . . . 5
⊢ (𝑏 = 𝐵 → ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝑏)) = ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝐵))) |
16 | 13, 15 | breq12d 5066 |
. . . 4
⊢ (𝑏 = 𝐵 → ((𝐴𝐷𝑏) ≤ ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝑏)) ↔ (𝐴𝐷𝐵) ≤ ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝐵)))) |
17 | | oveq1 7220 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (𝑐𝐷𝐴) = (𝐶𝐷𝐴)) |
18 | | oveq1 7220 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (𝑐𝐷𝐵) = (𝐶𝐷𝐵)) |
19 | 17, 18 | oveq12d 7231 |
. . . . 5
⊢ (𝑐 = 𝐶 → ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝐵)) = ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))) |
20 | 19 | breq2d 5065 |
. . . 4
⊢ (𝑐 = 𝐶 → ((𝐴𝐷𝐵) ≤ ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝐵)) ↔ (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))) |
21 | 12, 16, 20 | rspc3v 3550 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))) |
22 | 21 | 3comr 1127 |
. 2
⊢ ((𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))) |
23 | 8, 22 | mpan9 510 |
1
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))) |