MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psmettri2 Structured version   Visualization version   GIF version

Theorem psmettri2 24227
Description: Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
psmettri2 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))

Proof of Theorem psmettri2
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6865 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
2 ispsmet 24222 . . . . . . . 8 (𝑋 ∈ V → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))))
31, 2syl 17 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))))
43ibi 267 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))
54simprd 495 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
65r19.21bi 3225 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) → ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
76simprd 495 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) → ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
87ralrimiva 3125 . 2 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎𝑋𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
9 oveq1 7361 . . . . 5 (𝑎 = 𝐴 → (𝑎𝐷𝑏) = (𝐴𝐷𝑏))
10 oveq2 7362 . . . . . 6 (𝑎 = 𝐴 → (𝑐𝐷𝑎) = (𝑐𝐷𝐴))
1110oveq1d 7369 . . . . 5 (𝑎 = 𝐴 → ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) = ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝑏)))
129, 11breq12d 5108 . . . 4 (𝑎 = 𝐴 → ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ↔ (𝐴𝐷𝑏) ≤ ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝑏))))
13 oveq2 7362 . . . . 5 (𝑏 = 𝐵 → (𝐴𝐷𝑏) = (𝐴𝐷𝐵))
14 oveq2 7362 . . . . . 6 (𝑏 = 𝐵 → (𝑐𝐷𝑏) = (𝑐𝐷𝐵))
1514oveq2d 7370 . . . . 5 (𝑏 = 𝐵 → ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝑏)) = ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝐵)))
1613, 15breq12d 5108 . . . 4 (𝑏 = 𝐵 → ((𝐴𝐷𝑏) ≤ ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝑏)) ↔ (𝐴𝐷𝐵) ≤ ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝐵))))
17 oveq1 7361 . . . . . 6 (𝑐 = 𝐶 → (𝑐𝐷𝐴) = (𝐶𝐷𝐴))
18 oveq1 7361 . . . . . 6 (𝑐 = 𝐶 → (𝑐𝐷𝐵) = (𝐶𝐷𝐵))
1917, 18oveq12d 7372 . . . . 5 (𝑐 = 𝐶 → ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝐵)) = ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
2019breq2d 5107 . . . 4 (𝑐 = 𝐶 → ((𝐴𝐷𝐵) ≤ ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝐵)) ↔ (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
2112, 16, 20rspc3v 3589 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (∀𝑎𝑋𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
22213comr 1125 . 2 ((𝐶𝑋𝐴𝑋𝐵𝑋) → (∀𝑎𝑋𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
238, 22mpan9 506 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437   class class class wbr 5095   × cxp 5619  wf 6484  cfv 6488  (class class class)co 7354  0cc0 11015  *cxr 11154  cle 11156   +𝑒 cxad 13013  PsMetcpsmet 21279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-map 8760  df-xr 11159  df-psmet 21287
This theorem is referenced by:  psmetsym  24228  psmettri  24229  psmetge0  24230  psmetres2  24232  xblss2ps  24319  metideq  33929  metider  33930  pstmxmet  33933
  Copyright terms: Public domain W3C validator