MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psmettri2 Structured version   Visualization version   GIF version

Theorem psmettri2 24340
Description: Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
psmettri2 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))

Proof of Theorem psmettri2
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6958 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
2 ispsmet 24335 . . . . . . . 8 (𝑋 ∈ V → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))))
31, 2syl 17 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))))
43ibi 267 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))
54simprd 495 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
65r19.21bi 3257 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) → ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
76simprd 495 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎𝑋) → ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
87ralrimiva 3152 . 2 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎𝑋𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
9 oveq1 7455 . . . . 5 (𝑎 = 𝐴 → (𝑎𝐷𝑏) = (𝐴𝐷𝑏))
10 oveq2 7456 . . . . . 6 (𝑎 = 𝐴 → (𝑐𝐷𝑎) = (𝑐𝐷𝐴))
1110oveq1d 7463 . . . . 5 (𝑎 = 𝐴 → ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) = ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝑏)))
129, 11breq12d 5179 . . . 4 (𝑎 = 𝐴 → ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ↔ (𝐴𝐷𝑏) ≤ ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝑏))))
13 oveq2 7456 . . . . 5 (𝑏 = 𝐵 → (𝐴𝐷𝑏) = (𝐴𝐷𝐵))
14 oveq2 7456 . . . . . 6 (𝑏 = 𝐵 → (𝑐𝐷𝑏) = (𝑐𝐷𝐵))
1514oveq2d 7464 . . . . 5 (𝑏 = 𝐵 → ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝑏)) = ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝐵)))
1613, 15breq12d 5179 . . . 4 (𝑏 = 𝐵 → ((𝐴𝐷𝑏) ≤ ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝑏)) ↔ (𝐴𝐷𝐵) ≤ ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝐵))))
17 oveq1 7455 . . . . . 6 (𝑐 = 𝐶 → (𝑐𝐷𝐴) = (𝐶𝐷𝐴))
18 oveq1 7455 . . . . . 6 (𝑐 = 𝐶 → (𝑐𝐷𝐵) = (𝐶𝐷𝐵))
1917, 18oveq12d 7466 . . . . 5 (𝑐 = 𝐶 → ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝐵)) = ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
2019breq2d 5178 . . . 4 (𝑐 = 𝐶 → ((𝐴𝐷𝐵) ≤ ((𝑐𝐷𝐴) +𝑒 (𝑐𝐷𝐵)) ↔ (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
2112, 16, 20rspc3v 3651 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (∀𝑎𝑋𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
22213comr 1125 . 2 ((𝐶𝑋𝐴𝑋𝐵𝑋) → (∀𝑎𝑋𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
238, 22mpan9 506 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488   class class class wbr 5166   × cxp 5698  wf 6569  cfv 6573  (class class class)co 7448  0cc0 11184  *cxr 11323  cle 11325   +𝑒 cxad 13173  PsMetcpsmet 21371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-xr 11328  df-psmet 21379
This theorem is referenced by:  psmetsym  24341  psmettri  24342  psmetge0  24343  psmetres2  24345  xblss2ps  24432  metideq  33839  metider  33840  pstmxmet  33843
  Copyright terms: Public domain W3C validator