MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolycl Structured version   Visualization version   GIF version

Theorem bpolycl 15408
Description: Closure law for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bpolycl ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) ∈ ℂ)

Proof of Theorem bpolycl
Dummy variables 𝑛 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7165 . . . . 5 (𝑛 = 𝑘 → (𝑛 BernPoly 𝑋) = (𝑘 BernPoly 𝑋))
21eleq1d 2899 . . . 4 (𝑛 = 𝑘 → ((𝑛 BernPoly 𝑋) ∈ ℂ ↔ (𝑘 BernPoly 𝑋) ∈ ℂ))
32imbi2d 343 . . 3 (𝑛 = 𝑘 → ((𝑋 ∈ ℂ → (𝑛 BernPoly 𝑋) ∈ ℂ) ↔ (𝑋 ∈ ℂ → (𝑘 BernPoly 𝑋) ∈ ℂ)))
4 oveq1 7165 . . . . 5 (𝑛 = 𝑁 → (𝑛 BernPoly 𝑋) = (𝑁 BernPoly 𝑋))
54eleq1d 2899 . . . 4 (𝑛 = 𝑁 → ((𝑛 BernPoly 𝑋) ∈ ℂ ↔ (𝑁 BernPoly 𝑋) ∈ ℂ))
65imbi2d 343 . . 3 (𝑛 = 𝑁 → ((𝑋 ∈ ℂ → (𝑛 BernPoly 𝑋) ∈ ℂ) ↔ (𝑋 ∈ ℂ → (𝑁 BernPoly 𝑋) ∈ ℂ)))
7 r19.21v 3177 . . . 4 (∀𝑘 ∈ (0...(𝑛 − 1))(𝑋 ∈ ℂ → (𝑘 BernPoly 𝑋) ∈ ℂ) ↔ (𝑋 ∈ ℂ → ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ))
8 bpolyval 15405 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ) → (𝑛 BernPoly 𝑋) = ((𝑋𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))((𝑛C𝑚) · ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1)))))
983adant3 1128 . . . . . . 7 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (𝑛 BernPoly 𝑋) = ((𝑋𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))((𝑛C𝑚) · ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1)))))
10 simp2 1133 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → 𝑋 ∈ ℂ)
11 simp1 1132 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → 𝑛 ∈ ℕ0)
1210, 11expcld 13513 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (𝑋𝑛) ∈ ℂ)
13 fzfid 13344 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (0...(𝑛 − 1)) ∈ Fin)
14 elfzelz 12911 . . . . . . . . . . . 12 (𝑚 ∈ (0...(𝑛 − 1)) → 𝑚 ∈ ℤ)
15 bccl 13685 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑚 ∈ ℤ) → (𝑛C𝑚) ∈ ℕ0)
1611, 14, 15syl2an 597 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝑛C𝑚) ∈ ℕ0)
1716nn0cnd 11960 . . . . . . . . . 10 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝑛C𝑚) ∈ ℂ)
18 oveq1 7165 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (𝑘 BernPoly 𝑋) = (𝑚 BernPoly 𝑋))
1918eleq1d 2899 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((𝑘 BernPoly 𝑋) ∈ ℂ ↔ (𝑚 BernPoly 𝑋) ∈ ℂ))
2019rspccva 3624 . . . . . . . . . . . 12 ((∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝑚 BernPoly 𝑋) ∈ ℂ)
21203ad2antl3 1183 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝑚 BernPoly 𝑋) ∈ ℂ)
22 fzssp1 12953 . . . . . . . . . . . . . . 15 (0...(𝑛 − 1)) ⊆ (0...((𝑛 − 1) + 1))
2311nn0cnd 11960 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → 𝑛 ∈ ℂ)
24 ax-1cn 10597 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
25 npcan 10897 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
2623, 24, 25sylancl 588 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
2726oveq2d 7174 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (0...((𝑛 − 1) + 1)) = (0...𝑛))
2822, 27sseqtrid 4021 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (0...(𝑛 − 1)) ⊆ (0...𝑛))
2928sselda 3969 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → 𝑚 ∈ (0...𝑛))
30 fznn0sub 12942 . . . . . . . . . . . . 13 (𝑚 ∈ (0...𝑛) → (𝑛𝑚) ∈ ℕ0)
31 nn0p1nn 11939 . . . . . . . . . . . . 13 ((𝑛𝑚) ∈ ℕ0 → ((𝑛𝑚) + 1) ∈ ℕ)
3229, 30, 313syl 18 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → ((𝑛𝑚) + 1) ∈ ℕ)
3332nncnd 11656 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → ((𝑛𝑚) + 1) ∈ ℂ)
3432nnne0d 11690 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → ((𝑛𝑚) + 1) ≠ 0)
3521, 33, 34divcld 11418 . . . . . . . . . 10 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1)) ∈ ℂ)
3617, 35mulcld 10663 . . . . . . . . 9 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → ((𝑛C𝑚) · ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1))) ∈ ℂ)
3713, 36fsumcl 15092 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → Σ𝑚 ∈ (0...(𝑛 − 1))((𝑛C𝑚) · ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1))) ∈ ℂ)
3812, 37subcld 10999 . . . . . . 7 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → ((𝑋𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))((𝑛C𝑚) · ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1)))) ∈ ℂ)
399, 38eqeltrd 2915 . . . . . 6 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (𝑛 BernPoly 𝑋) ∈ ℂ)
40393exp 1115 . . . . 5 (𝑛 ∈ ℕ0 → (𝑋 ∈ ℂ → (∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ → (𝑛 BernPoly 𝑋) ∈ ℂ)))
4140a2d 29 . . . 4 (𝑛 ∈ ℕ0 → ((𝑋 ∈ ℂ → ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (𝑋 ∈ ℂ → (𝑛 BernPoly 𝑋) ∈ ℂ)))
427, 41syl5bi 244 . . 3 (𝑛 ∈ ℕ0 → (∀𝑘 ∈ (0...(𝑛 − 1))(𝑋 ∈ ℂ → (𝑘 BernPoly 𝑋) ∈ ℂ) → (𝑋 ∈ ℂ → (𝑛 BernPoly 𝑋) ∈ ℂ)))
433, 6, 42nn0sinds 13360 . 2 (𝑁 ∈ ℕ0 → (𝑋 ∈ ℂ → (𝑁 BernPoly 𝑋) ∈ ℂ))
4443imp 409 1 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  cmin 10872   / cdiv 11299  cn 11640  0cn0 11900  cz 11984  ...cfz 12895  cexp 13432  Ccbc 13665  Σcsu 15044   BernPoly cbp 15402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-bpoly 15403
This theorem is referenced by:  bpolysum  15409  bpolydiflem  15410  fsumkthpow  15412  bpoly3  15414  bpoly4  15415
  Copyright terms: Public domain W3C validator