MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolycl Structured version   Visualization version   GIF version

Theorem bpolycl 15690
Description: Closure law for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bpolycl ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) ∈ ℂ)

Proof of Theorem bpolycl
Dummy variables 𝑛 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7262 . . . . 5 (𝑛 = 𝑘 → (𝑛 BernPoly 𝑋) = (𝑘 BernPoly 𝑋))
21eleq1d 2823 . . . 4 (𝑛 = 𝑘 → ((𝑛 BernPoly 𝑋) ∈ ℂ ↔ (𝑘 BernPoly 𝑋) ∈ ℂ))
32imbi2d 340 . . 3 (𝑛 = 𝑘 → ((𝑋 ∈ ℂ → (𝑛 BernPoly 𝑋) ∈ ℂ) ↔ (𝑋 ∈ ℂ → (𝑘 BernPoly 𝑋) ∈ ℂ)))
4 oveq1 7262 . . . . 5 (𝑛 = 𝑁 → (𝑛 BernPoly 𝑋) = (𝑁 BernPoly 𝑋))
54eleq1d 2823 . . . 4 (𝑛 = 𝑁 → ((𝑛 BernPoly 𝑋) ∈ ℂ ↔ (𝑁 BernPoly 𝑋) ∈ ℂ))
65imbi2d 340 . . 3 (𝑛 = 𝑁 → ((𝑋 ∈ ℂ → (𝑛 BernPoly 𝑋) ∈ ℂ) ↔ (𝑋 ∈ ℂ → (𝑁 BernPoly 𝑋) ∈ ℂ)))
7 r19.21v 3100 . . . 4 (∀𝑘 ∈ (0...(𝑛 − 1))(𝑋 ∈ ℂ → (𝑘 BernPoly 𝑋) ∈ ℂ) ↔ (𝑋 ∈ ℂ → ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ))
8 bpolyval 15687 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ) → (𝑛 BernPoly 𝑋) = ((𝑋𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))((𝑛C𝑚) · ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1)))))
983adant3 1130 . . . . . . 7 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (𝑛 BernPoly 𝑋) = ((𝑋𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))((𝑛C𝑚) · ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1)))))
10 simp2 1135 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → 𝑋 ∈ ℂ)
11 simp1 1134 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → 𝑛 ∈ ℕ0)
1210, 11expcld 13792 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (𝑋𝑛) ∈ ℂ)
13 fzfid 13621 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (0...(𝑛 − 1)) ∈ Fin)
14 elfzelz 13185 . . . . . . . . . . . 12 (𝑚 ∈ (0...(𝑛 − 1)) → 𝑚 ∈ ℤ)
15 bccl 13964 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑚 ∈ ℤ) → (𝑛C𝑚) ∈ ℕ0)
1611, 14, 15syl2an 595 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝑛C𝑚) ∈ ℕ0)
1716nn0cnd 12225 . . . . . . . . . 10 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝑛C𝑚) ∈ ℂ)
18 oveq1 7262 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (𝑘 BernPoly 𝑋) = (𝑚 BernPoly 𝑋))
1918eleq1d 2823 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((𝑘 BernPoly 𝑋) ∈ ℂ ↔ (𝑚 BernPoly 𝑋) ∈ ℂ))
2019rspccva 3551 . . . . . . . . . . . 12 ((∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝑚 BernPoly 𝑋) ∈ ℂ)
21203ad2antl3 1185 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝑚 BernPoly 𝑋) ∈ ℂ)
22 fzssp1 13228 . . . . . . . . . . . . . . 15 (0...(𝑛 − 1)) ⊆ (0...((𝑛 − 1) + 1))
2311nn0cnd 12225 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → 𝑛 ∈ ℂ)
24 ax-1cn 10860 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
25 npcan 11160 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
2623, 24, 25sylancl 585 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
2726oveq2d 7271 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (0...((𝑛 − 1) + 1)) = (0...𝑛))
2822, 27sseqtrid 3969 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (0...(𝑛 − 1)) ⊆ (0...𝑛))
2928sselda 3917 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → 𝑚 ∈ (0...𝑛))
30 fznn0sub 13217 . . . . . . . . . . . . 13 (𝑚 ∈ (0...𝑛) → (𝑛𝑚) ∈ ℕ0)
31 nn0p1nn 12202 . . . . . . . . . . . . 13 ((𝑛𝑚) ∈ ℕ0 → ((𝑛𝑚) + 1) ∈ ℕ)
3229, 30, 313syl 18 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → ((𝑛𝑚) + 1) ∈ ℕ)
3332nncnd 11919 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → ((𝑛𝑚) + 1) ∈ ℂ)
3432nnne0d 11953 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → ((𝑛𝑚) + 1) ≠ 0)
3521, 33, 34divcld 11681 . . . . . . . . . 10 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1)) ∈ ℂ)
3617, 35mulcld 10926 . . . . . . . . 9 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → ((𝑛C𝑚) · ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1))) ∈ ℂ)
3713, 36fsumcl 15373 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → Σ𝑚 ∈ (0...(𝑛 − 1))((𝑛C𝑚) · ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1))) ∈ ℂ)
3812, 37subcld 11262 . . . . . . 7 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → ((𝑋𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))((𝑛C𝑚) · ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1)))) ∈ ℂ)
399, 38eqeltrd 2839 . . . . . 6 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (𝑛 BernPoly 𝑋) ∈ ℂ)
40393exp 1117 . . . . 5 (𝑛 ∈ ℕ0 → (𝑋 ∈ ℂ → (∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ → (𝑛 BernPoly 𝑋) ∈ ℂ)))
4140a2d 29 . . . 4 (𝑛 ∈ ℕ0 → ((𝑋 ∈ ℂ → ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (𝑋 ∈ ℂ → (𝑛 BernPoly 𝑋) ∈ ℂ)))
427, 41syl5bi 241 . . 3 (𝑛 ∈ ℕ0 → (∀𝑘 ∈ (0...(𝑛 − 1))(𝑋 ∈ ℂ → (𝑘 BernPoly 𝑋) ∈ ℂ) → (𝑋 ∈ ℂ → (𝑛 BernPoly 𝑋) ∈ ℂ)))
433, 6, 42nn0sinds 13637 . 2 (𝑁 ∈ ℕ0 → (𝑋 ∈ ℂ → (𝑁 BernPoly 𝑋) ∈ ℂ))
4443imp 406 1 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135   / cdiv 11562  cn 11903  0cn0 12163  cz 12249  ...cfz 13168  cexp 13710  Ccbc 13944  Σcsu 15325   BernPoly cbp 15684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-bpoly 15685
This theorem is referenced by:  bpolysum  15691  bpolydiflem  15692  fsumkthpow  15694  bpoly3  15696  bpoly4  15697
  Copyright terms: Public domain W3C validator