MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolycl Structured version   Visualization version   GIF version

Theorem bpolycl 15398
Description: Closure law for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bpolycl ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) ∈ ℂ)

Proof of Theorem bpolycl
Dummy variables 𝑛 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7158 . . . . 5 (𝑛 = 𝑘 → (𝑛 BernPoly 𝑋) = (𝑘 BernPoly 𝑋))
21eleq1d 2901 . . . 4 (𝑛 = 𝑘 → ((𝑛 BernPoly 𝑋) ∈ ℂ ↔ (𝑘 BernPoly 𝑋) ∈ ℂ))
32imbi2d 342 . . 3 (𝑛 = 𝑘 → ((𝑋 ∈ ℂ → (𝑛 BernPoly 𝑋) ∈ ℂ) ↔ (𝑋 ∈ ℂ → (𝑘 BernPoly 𝑋) ∈ ℂ)))
4 oveq1 7158 . . . . 5 (𝑛 = 𝑁 → (𝑛 BernPoly 𝑋) = (𝑁 BernPoly 𝑋))
54eleq1d 2901 . . . 4 (𝑛 = 𝑁 → ((𝑛 BernPoly 𝑋) ∈ ℂ ↔ (𝑁 BernPoly 𝑋) ∈ ℂ))
65imbi2d 342 . . 3 (𝑛 = 𝑁 → ((𝑋 ∈ ℂ → (𝑛 BernPoly 𝑋) ∈ ℂ) ↔ (𝑋 ∈ ℂ → (𝑁 BernPoly 𝑋) ∈ ℂ)))
7 r19.21v 3179 . . . 4 (∀𝑘 ∈ (0...(𝑛 − 1))(𝑋 ∈ ℂ → (𝑘 BernPoly 𝑋) ∈ ℂ) ↔ (𝑋 ∈ ℂ → ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ))
8 bpolyval 15395 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ) → (𝑛 BernPoly 𝑋) = ((𝑋𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))((𝑛C𝑚) · ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1)))))
983adant3 1126 . . . . . . 7 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (𝑛 BernPoly 𝑋) = ((𝑋𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))((𝑛C𝑚) · ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1)))))
10 simp2 1131 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → 𝑋 ∈ ℂ)
11 simp1 1130 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → 𝑛 ∈ ℕ0)
1210, 11expcld 13503 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (𝑋𝑛) ∈ ℂ)
13 fzfid 13334 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (0...(𝑛 − 1)) ∈ Fin)
14 elfzelz 12901 . . . . . . . . . . . 12 (𝑚 ∈ (0...(𝑛 − 1)) → 𝑚 ∈ ℤ)
15 bccl 13675 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑚 ∈ ℤ) → (𝑛C𝑚) ∈ ℕ0)
1611, 14, 15syl2an 595 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝑛C𝑚) ∈ ℕ0)
1716nn0cnd 11949 . . . . . . . . . 10 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝑛C𝑚) ∈ ℂ)
18 oveq1 7158 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (𝑘 BernPoly 𝑋) = (𝑚 BernPoly 𝑋))
1918eleq1d 2901 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((𝑘 BernPoly 𝑋) ∈ ℂ ↔ (𝑚 BernPoly 𝑋) ∈ ℂ))
2019rspccva 3625 . . . . . . . . . . . 12 ((∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝑚 BernPoly 𝑋) ∈ ℂ)
21203ad2antl3 1181 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝑚 BernPoly 𝑋) ∈ ℂ)
22 fzssp1 12943 . . . . . . . . . . . . . . 15 (0...(𝑛 − 1)) ⊆ (0...((𝑛 − 1) + 1))
2311nn0cnd 11949 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → 𝑛 ∈ ℂ)
24 ax-1cn 10587 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
25 npcan 10887 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
2623, 24, 25sylancl 586 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
2726oveq2d 7167 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (0...((𝑛 − 1) + 1)) = (0...𝑛))
2822, 27sseqtrid 4022 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (0...(𝑛 − 1)) ⊆ (0...𝑛))
2928sselda 3970 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → 𝑚 ∈ (0...𝑛))
30 fznn0sub 12932 . . . . . . . . . . . . 13 (𝑚 ∈ (0...𝑛) → (𝑛𝑚) ∈ ℕ0)
31 nn0p1nn 11928 . . . . . . . . . . . . 13 ((𝑛𝑚) ∈ ℕ0 → ((𝑛𝑚) + 1) ∈ ℕ)
3229, 30, 313syl 18 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → ((𝑛𝑚) + 1) ∈ ℕ)
3332nncnd 11646 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → ((𝑛𝑚) + 1) ∈ ℂ)
3432nnne0d 11679 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → ((𝑛𝑚) + 1) ≠ 0)
3521, 33, 34divcld 11408 . . . . . . . . . 10 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1)) ∈ ℂ)
3617, 35mulcld 10653 . . . . . . . . 9 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → ((𝑛C𝑚) · ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1))) ∈ ℂ)
3713, 36fsumcl 15082 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → Σ𝑚 ∈ (0...(𝑛 − 1))((𝑛C𝑚) · ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1))) ∈ ℂ)
3812, 37subcld 10989 . . . . . . 7 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → ((𝑋𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))((𝑛C𝑚) · ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1)))) ∈ ℂ)
399, 38eqeltrd 2917 . . . . . 6 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (𝑛 BernPoly 𝑋) ∈ ℂ)
40393exp 1113 . . . . 5 (𝑛 ∈ ℕ0 → (𝑋 ∈ ℂ → (∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ → (𝑛 BernPoly 𝑋) ∈ ℂ)))
4140a2d 29 . . . 4 (𝑛 ∈ ℕ0 → ((𝑋 ∈ ℂ → ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (𝑋 ∈ ℂ → (𝑛 BernPoly 𝑋) ∈ ℂ)))
427, 41syl5bi 243 . . 3 (𝑛 ∈ ℕ0 → (∀𝑘 ∈ (0...(𝑛 − 1))(𝑋 ∈ ℂ → (𝑘 BernPoly 𝑋) ∈ ℂ) → (𝑋 ∈ ℂ → (𝑛 BernPoly 𝑋) ∈ ℂ)))
433, 6, 42nn0sinds 13350 . 2 (𝑁 ∈ ℕ0 → (𝑋 ∈ ℂ → (𝑁 BernPoly 𝑋) ∈ ℂ))
4443imp 407 1 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2106  wral 3142  (class class class)co 7151  cc 10527  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  cmin 10862   / cdiv 11289  cn 11630  0cn0 11889  cz 11973  ...cfz 12885  cexp 13422  Ccbc 13655  Σcsu 15035   BernPoly cbp 15392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-fz 12886  df-fzo 13027  df-seq 13363  df-exp 13423  df-fac 13627  df-bc 13656  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-sum 15036  df-bpoly 15393
This theorem is referenced by:  bpolysum  15399  bpolydiflem  15400  fsumkthpow  15402  bpoly3  15404  bpoly4  15405
  Copyright terms: Public domain W3C validator