MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolycl Structured version   Visualization version   GIF version

Theorem bpolycl 16088
Description: Closure law for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bpolycl ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) ∈ ℂ)

Proof of Theorem bpolycl
Dummy variables 𝑛 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7438 . . . . 5 (𝑛 = 𝑘 → (𝑛 BernPoly 𝑋) = (𝑘 BernPoly 𝑋))
21eleq1d 2826 . . . 4 (𝑛 = 𝑘 → ((𝑛 BernPoly 𝑋) ∈ ℂ ↔ (𝑘 BernPoly 𝑋) ∈ ℂ))
32imbi2d 340 . . 3 (𝑛 = 𝑘 → ((𝑋 ∈ ℂ → (𝑛 BernPoly 𝑋) ∈ ℂ) ↔ (𝑋 ∈ ℂ → (𝑘 BernPoly 𝑋) ∈ ℂ)))
4 oveq1 7438 . . . . 5 (𝑛 = 𝑁 → (𝑛 BernPoly 𝑋) = (𝑁 BernPoly 𝑋))
54eleq1d 2826 . . . 4 (𝑛 = 𝑁 → ((𝑛 BernPoly 𝑋) ∈ ℂ ↔ (𝑁 BernPoly 𝑋) ∈ ℂ))
65imbi2d 340 . . 3 (𝑛 = 𝑁 → ((𝑋 ∈ ℂ → (𝑛 BernPoly 𝑋) ∈ ℂ) ↔ (𝑋 ∈ ℂ → (𝑁 BernPoly 𝑋) ∈ ℂ)))
7 r19.21v 3180 . . . 4 (∀𝑘 ∈ (0...(𝑛 − 1))(𝑋 ∈ ℂ → (𝑘 BernPoly 𝑋) ∈ ℂ) ↔ (𝑋 ∈ ℂ → ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ))
8 bpolyval 16085 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ) → (𝑛 BernPoly 𝑋) = ((𝑋𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))((𝑛C𝑚) · ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1)))))
983adant3 1133 . . . . . . 7 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (𝑛 BernPoly 𝑋) = ((𝑋𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))((𝑛C𝑚) · ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1)))))
10 simp2 1138 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → 𝑋 ∈ ℂ)
11 simp1 1137 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → 𝑛 ∈ ℕ0)
1210, 11expcld 14186 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (𝑋𝑛) ∈ ℂ)
13 fzfid 14014 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (0...(𝑛 − 1)) ∈ Fin)
14 elfzelz 13564 . . . . . . . . . . . 12 (𝑚 ∈ (0...(𝑛 − 1)) → 𝑚 ∈ ℤ)
15 bccl 14361 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑚 ∈ ℤ) → (𝑛C𝑚) ∈ ℕ0)
1611, 14, 15syl2an 596 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝑛C𝑚) ∈ ℕ0)
1716nn0cnd 12589 . . . . . . . . . 10 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝑛C𝑚) ∈ ℂ)
18 oveq1 7438 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (𝑘 BernPoly 𝑋) = (𝑚 BernPoly 𝑋))
1918eleq1d 2826 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((𝑘 BernPoly 𝑋) ∈ ℂ ↔ (𝑚 BernPoly 𝑋) ∈ ℂ))
2019rspccva 3621 . . . . . . . . . . . 12 ((∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝑚 BernPoly 𝑋) ∈ ℂ)
21203ad2antl3 1188 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝑚 BernPoly 𝑋) ∈ ℂ)
22 fzssp1 13607 . . . . . . . . . . . . . . 15 (0...(𝑛 − 1)) ⊆ (0...((𝑛 − 1) + 1))
2311nn0cnd 12589 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → 𝑛 ∈ ℂ)
24 ax-1cn 11213 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
25 npcan 11517 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
2623, 24, 25sylancl 586 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
2726oveq2d 7447 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (0...((𝑛 − 1) + 1)) = (0...𝑛))
2822, 27sseqtrid 4026 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (0...(𝑛 − 1)) ⊆ (0...𝑛))
2928sselda 3983 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → 𝑚 ∈ (0...𝑛))
30 fznn0sub 13596 . . . . . . . . . . . . 13 (𝑚 ∈ (0...𝑛) → (𝑛𝑚) ∈ ℕ0)
31 nn0p1nn 12565 . . . . . . . . . . . . 13 ((𝑛𝑚) ∈ ℕ0 → ((𝑛𝑚) + 1) ∈ ℕ)
3229, 30, 313syl 18 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → ((𝑛𝑚) + 1) ∈ ℕ)
3332nncnd 12282 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → ((𝑛𝑚) + 1) ∈ ℂ)
3432nnne0d 12316 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → ((𝑛𝑚) + 1) ≠ 0)
3521, 33, 34divcld 12043 . . . . . . . . . 10 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1)) ∈ ℂ)
3617, 35mulcld 11281 . . . . . . . . 9 (((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → ((𝑛C𝑚) · ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1))) ∈ ℂ)
3713, 36fsumcl 15769 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → Σ𝑚 ∈ (0...(𝑛 − 1))((𝑛C𝑚) · ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1))) ∈ ℂ)
3812, 37subcld 11620 . . . . . . 7 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → ((𝑋𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))((𝑛C𝑚) · ((𝑚 BernPoly 𝑋) / ((𝑛𝑚) + 1)))) ∈ ℂ)
399, 38eqeltrd 2841 . . . . . 6 ((𝑛 ∈ ℕ0𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (𝑛 BernPoly 𝑋) ∈ ℂ)
40393exp 1120 . . . . 5 (𝑛 ∈ ℕ0 → (𝑋 ∈ ℂ → (∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ → (𝑛 BernPoly 𝑋) ∈ ℂ)))
4140a2d 29 . . . 4 (𝑛 ∈ ℕ0 → ((𝑋 ∈ ℂ → ∀𝑘 ∈ (0...(𝑛 − 1))(𝑘 BernPoly 𝑋) ∈ ℂ) → (𝑋 ∈ ℂ → (𝑛 BernPoly 𝑋) ∈ ℂ)))
427, 41biimtrid 242 . . 3 (𝑛 ∈ ℕ0 → (∀𝑘 ∈ (0...(𝑛 − 1))(𝑋 ∈ ℂ → (𝑘 BernPoly 𝑋) ∈ ℂ) → (𝑋 ∈ ℂ → (𝑛 BernPoly 𝑋) ∈ ℂ)))
433, 6, 42nn0sinds 14030 . 2 (𝑁 ∈ ℕ0 → (𝑋 ∈ ℂ → (𝑁 BernPoly 𝑋) ∈ ℂ))
4443imp 406 1 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492   / cdiv 11920  cn 12266  0cn0 12526  cz 12613  ...cfz 13547  cexp 14102  Ccbc 14341  Σcsu 15722   BernPoly cbp 16082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-bpoly 16083
This theorem is referenced by:  bpolysum  16089  bpolydiflem  16090  fsumkthpow  16092  bpoly3  16094  bpoly4  16095
  Copyright terms: Public domain W3C validator