Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfodd6 Structured version   Visualization version   GIF version

Theorem dfodd6 47799
Description: Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.)
Assertion
Ref Expression
dfodd6 Odd = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)}
Distinct variable group:   𝑧,𝑖

Proof of Theorem dfodd6
StepHypRef Expression
1 dfodd2 47798 . 2 Odd = {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ}
2 simpr 484 . . . . . 6 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → ((𝑧 − 1) / 2) ∈ ℤ)
3 oveq2 7363 . . . . . . . . . 10 (𝑖 = ((𝑧 − 1) / 2) → (2 · 𝑖) = (2 · ((𝑧 − 1) / 2)))
4 peano2zm 12525 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → (𝑧 − 1) ∈ ℤ)
54zcnd 12588 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → (𝑧 − 1) ∈ ℂ)
6 2cnd 12214 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 2 ∈ ℂ)
7 2ne0 12240 . . . . . . . . . . . . . 14 2 ≠ 0
87a1i 11 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 2 ≠ 0)
95, 6, 83jca 1128 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → ((𝑧 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0))
109adantr 480 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → ((𝑧 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0))
11 divcan2 11795 . . . . . . . . . . 11 (((𝑧 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · ((𝑧 − 1) / 2)) = (𝑧 − 1))
1210, 11syl 17 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → (2 · ((𝑧 − 1) / 2)) = (𝑧 − 1))
133, 12sylan9eqr 2790 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → (2 · 𝑖) = (𝑧 − 1))
1413oveq1d 7370 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → ((2 · 𝑖) + 1) = ((𝑧 − 1) + 1))
15 zcn 12484 . . . . . . . . . . 11 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
16 npcan1 11553 . . . . . . . . . . 11 (𝑧 ∈ ℂ → ((𝑧 − 1) + 1) = 𝑧)
1715, 16syl 17 . . . . . . . . . 10 (𝑧 ∈ ℤ → ((𝑧 − 1) + 1) = 𝑧)
1817adantr 480 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → ((𝑧 − 1) + 1) = 𝑧)
1918adantr 480 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → ((𝑧 − 1) + 1) = 𝑧)
2014, 19eqtrd 2768 . . . . . . 7 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → ((2 · 𝑖) + 1) = 𝑧)
2120eqeq2d 2744 . . . . . 6 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → (𝑧 = ((2 · 𝑖) + 1) ↔ 𝑧 = 𝑧))
22 eqidd 2734 . . . . . 6 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → 𝑧 = 𝑧)
232, 21, 22rspcedvd 3575 . . . . 5 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1))
2423ex 412 . . . 4 (𝑧 ∈ ℤ → (((𝑧 − 1) / 2) ∈ ℤ → ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)))
25 oveq1 7362 . . . . . . . . 9 (𝑧 = ((2 · 𝑖) + 1) → (𝑧 − 1) = (((2 · 𝑖) + 1) − 1))
26 zcn 12484 . . . . . . . . . . 11 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
27 mulcl 11101 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (2 · 𝑖) ∈ ℂ)
286, 26, 27syl2an 596 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (2 · 𝑖) ∈ ℂ)
29 pncan1 11552 . . . . . . . . . 10 ((2 · 𝑖) ∈ ℂ → (((2 · 𝑖) + 1) − 1) = (2 · 𝑖))
3028, 29syl 17 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (((2 · 𝑖) + 1) − 1) = (2 · 𝑖))
3125, 30sylan9eqr 2790 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → (𝑧 − 1) = (2 · 𝑖))
3231oveq1d 7370 . . . . . . 7 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → ((𝑧 − 1) / 2) = ((2 · 𝑖) / 2))
3326adantl 481 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
34 2cnd 12214 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ)
357a1i 11 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ≠ 0)
3633, 34, 35divcan3d 11913 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((2 · 𝑖) / 2) = 𝑖)
3736adantr 480 . . . . . . 7 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → ((2 · 𝑖) / 2) = 𝑖)
3832, 37eqtrd 2768 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → ((𝑧 − 1) / 2) = 𝑖)
39 simpr 484 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
4039adantr 480 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → 𝑖 ∈ ℤ)
4138, 40eqeltrd 2833 . . . . 5 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → ((𝑧 − 1) / 2) ∈ ℤ)
4241rexlimdva2 3136 . . . 4 (𝑧 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1) → ((𝑧 − 1) / 2) ∈ ℤ))
4324, 42impbid 212 . . 3 (𝑧 ∈ ℤ → (((𝑧 − 1) / 2) ∈ ℤ ↔ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)))
4443rabbiia 3400 . 2 {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ} = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)}
451, 44eqtri 2756 1 Odd = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)}
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057  {crab 3396  (class class class)co 7355  cc 11015  0cc0 11017  1c1 11018   + caddc 11020   · cmul 11022  cmin 11355   / cdiv 11785  2c2 12191  cz 12479   Odd codd 47787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-odd 47789
This theorem is referenced by:  dfodd3  47812  odd2np1ALTV  47836  opoeALTV  47845  opeoALTV  47846
  Copyright terms: Public domain W3C validator