Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfodd6 Structured version   Visualization version   GIF version

Theorem dfodd6 45949
Description: Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.)
Assertion
Ref Expression
dfodd6 Odd = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)}
Distinct variable group:   𝑧,𝑖

Proof of Theorem dfodd6
StepHypRef Expression
1 dfodd2 45948 . 2 Odd = {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ}
2 simpr 485 . . . . . 6 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → ((𝑧 − 1) / 2) ∈ ℤ)
3 oveq2 7370 . . . . . . . . . 10 (𝑖 = ((𝑧 − 1) / 2) → (2 · 𝑖) = (2 · ((𝑧 − 1) / 2)))
4 peano2zm 12555 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → (𝑧 − 1) ∈ ℤ)
54zcnd 12617 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → (𝑧 − 1) ∈ ℂ)
6 2cnd 12240 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 2 ∈ ℂ)
7 2ne0 12266 . . . . . . . . . . . . . 14 2 ≠ 0
87a1i 11 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 2 ≠ 0)
95, 6, 83jca 1128 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → ((𝑧 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0))
109adantr 481 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → ((𝑧 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0))
11 divcan2 11830 . . . . . . . . . . 11 (((𝑧 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · ((𝑧 − 1) / 2)) = (𝑧 − 1))
1210, 11syl 17 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → (2 · ((𝑧 − 1) / 2)) = (𝑧 − 1))
133, 12sylan9eqr 2793 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → (2 · 𝑖) = (𝑧 − 1))
1413oveq1d 7377 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → ((2 · 𝑖) + 1) = ((𝑧 − 1) + 1))
15 zcn 12513 . . . . . . . . . . 11 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
16 npcan1 11589 . . . . . . . . . . 11 (𝑧 ∈ ℂ → ((𝑧 − 1) + 1) = 𝑧)
1715, 16syl 17 . . . . . . . . . 10 (𝑧 ∈ ℤ → ((𝑧 − 1) + 1) = 𝑧)
1817adantr 481 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → ((𝑧 − 1) + 1) = 𝑧)
1918adantr 481 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → ((𝑧 − 1) + 1) = 𝑧)
2014, 19eqtrd 2771 . . . . . . 7 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → ((2 · 𝑖) + 1) = 𝑧)
2120eqeq2d 2742 . . . . . 6 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → (𝑧 = ((2 · 𝑖) + 1) ↔ 𝑧 = 𝑧))
22 eqidd 2732 . . . . . 6 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → 𝑧 = 𝑧)
232, 21, 22rspcedvd 3584 . . . . 5 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1))
2423ex 413 . . . 4 (𝑧 ∈ ℤ → (((𝑧 − 1) / 2) ∈ ℤ → ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)))
25 oveq1 7369 . . . . . . . . 9 (𝑧 = ((2 · 𝑖) + 1) → (𝑧 − 1) = (((2 · 𝑖) + 1) − 1))
26 zcn 12513 . . . . . . . . . . 11 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
27 mulcl 11144 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (2 · 𝑖) ∈ ℂ)
286, 26, 27syl2an 596 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (2 · 𝑖) ∈ ℂ)
29 pncan1 11588 . . . . . . . . . 10 ((2 · 𝑖) ∈ ℂ → (((2 · 𝑖) + 1) − 1) = (2 · 𝑖))
3028, 29syl 17 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (((2 · 𝑖) + 1) − 1) = (2 · 𝑖))
3125, 30sylan9eqr 2793 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → (𝑧 − 1) = (2 · 𝑖))
3231oveq1d 7377 . . . . . . 7 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → ((𝑧 − 1) / 2) = ((2 · 𝑖) / 2))
3326adantl 482 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
34 2cnd 12240 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ)
357a1i 11 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ≠ 0)
3633, 34, 35divcan3d 11945 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((2 · 𝑖) / 2) = 𝑖)
3736adantr 481 . . . . . . 7 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → ((2 · 𝑖) / 2) = 𝑖)
3832, 37eqtrd 2771 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → ((𝑧 − 1) / 2) = 𝑖)
39 simpr 485 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
4039adantr 481 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → 𝑖 ∈ ℤ)
4138, 40eqeltrd 2832 . . . . 5 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → ((𝑧 − 1) / 2) ∈ ℤ)
4241rexlimdva2 3150 . . . 4 (𝑧 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1) → ((𝑧 − 1) / 2) ∈ ℤ))
4324, 42impbid 211 . . 3 (𝑧 ∈ ℤ → (((𝑧 − 1) / 2) ∈ ℤ ↔ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)))
4443rabbiia 3409 . 2 {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ} = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)}
451, 44eqtri 2759 1 Odd = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)}
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wrex 3069  {crab 3405  (class class class)co 7362  cc 11058  0cc0 11060  1c1 11061   + caddc 11063   · cmul 11065  cmin 11394   / cdiv 11821  2c2 12217  cz 12508   Odd codd 45937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-n0 12423  df-z 12509  df-odd 45939
This theorem is referenced by:  dfodd3  45962  odd2np1ALTV  45986  opoeALTV  45995  opeoALTV  45996
  Copyright terms: Public domain W3C validator