Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfodd6 Structured version   Visualization version   GIF version

Theorem dfodd6 44705
Description: Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.)
Assertion
Ref Expression
dfodd6 Odd = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)}
Distinct variable group:   𝑧,𝑖

Proof of Theorem dfodd6
StepHypRef Expression
1 dfodd2 44704 . 2 Odd = {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ}
2 simpr 488 . . . . . 6 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → ((𝑧 − 1) / 2) ∈ ℤ)
3 oveq2 7199 . . . . . . . . . 10 (𝑖 = ((𝑧 − 1) / 2) → (2 · 𝑖) = (2 · ((𝑧 − 1) / 2)))
4 peano2zm 12185 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → (𝑧 − 1) ∈ ℤ)
54zcnd 12248 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → (𝑧 − 1) ∈ ℂ)
6 2cnd 11873 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 2 ∈ ℂ)
7 2ne0 11899 . . . . . . . . . . . . . 14 2 ≠ 0
87a1i 11 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 2 ≠ 0)
95, 6, 83jca 1130 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → ((𝑧 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0))
109adantr 484 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → ((𝑧 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0))
11 divcan2 11463 . . . . . . . . . . 11 (((𝑧 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · ((𝑧 − 1) / 2)) = (𝑧 − 1))
1210, 11syl 17 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → (2 · ((𝑧 − 1) / 2)) = (𝑧 − 1))
133, 12sylan9eqr 2793 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → (2 · 𝑖) = (𝑧 − 1))
1413oveq1d 7206 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → ((2 · 𝑖) + 1) = ((𝑧 − 1) + 1))
15 zcn 12146 . . . . . . . . . . 11 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
16 npcan1 11222 . . . . . . . . . . 11 (𝑧 ∈ ℂ → ((𝑧 − 1) + 1) = 𝑧)
1715, 16syl 17 . . . . . . . . . 10 (𝑧 ∈ ℤ → ((𝑧 − 1) + 1) = 𝑧)
1817adantr 484 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → ((𝑧 − 1) + 1) = 𝑧)
1918adantr 484 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → ((𝑧 − 1) + 1) = 𝑧)
2014, 19eqtrd 2771 . . . . . . 7 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → ((2 · 𝑖) + 1) = 𝑧)
2120eqeq2d 2747 . . . . . 6 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → (𝑧 = ((2 · 𝑖) + 1) ↔ 𝑧 = 𝑧))
22 eqidd 2737 . . . . . 6 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → 𝑧 = 𝑧)
232, 21, 22rspcedvd 3530 . . . . 5 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1))
2423ex 416 . . . 4 (𝑧 ∈ ℤ → (((𝑧 − 1) / 2) ∈ ℤ → ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)))
25 oveq1 7198 . . . . . . . . 9 (𝑧 = ((2 · 𝑖) + 1) → (𝑧 − 1) = (((2 · 𝑖) + 1) − 1))
26 zcn 12146 . . . . . . . . . . 11 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
27 mulcl 10778 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (2 · 𝑖) ∈ ℂ)
286, 26, 27syl2an 599 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (2 · 𝑖) ∈ ℂ)
29 pncan1 11221 . . . . . . . . . 10 ((2 · 𝑖) ∈ ℂ → (((2 · 𝑖) + 1) − 1) = (2 · 𝑖))
3028, 29syl 17 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (((2 · 𝑖) + 1) − 1) = (2 · 𝑖))
3125, 30sylan9eqr 2793 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → (𝑧 − 1) = (2 · 𝑖))
3231oveq1d 7206 . . . . . . 7 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → ((𝑧 − 1) / 2) = ((2 · 𝑖) / 2))
3326adantl 485 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
34 2cnd 11873 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ)
357a1i 11 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ≠ 0)
3633, 34, 35divcan3d 11578 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((2 · 𝑖) / 2) = 𝑖)
3736adantr 484 . . . . . . 7 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → ((2 · 𝑖) / 2) = 𝑖)
3832, 37eqtrd 2771 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → ((𝑧 − 1) / 2) = 𝑖)
39 simpr 488 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
4039adantr 484 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → 𝑖 ∈ ℤ)
4138, 40eqeltrd 2831 . . . . 5 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → ((𝑧 − 1) / 2) ∈ ℤ)
4241rexlimdva2 3196 . . . 4 (𝑧 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1) → ((𝑧 − 1) / 2) ∈ ℤ))
4324, 42impbid 215 . . 3 (𝑧 ∈ ℤ → (((𝑧 − 1) / 2) ∈ ℤ ↔ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)))
4443rabbiia 3372 . 2 {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ} = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)}
451, 44eqtri 2759 1 Odd = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)}
Colors of variables: wff setvar class
Syntax hints:  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932  wrex 3052  {crab 3055  (class class class)co 7191  cc 10692  0cc0 10694  1c1 10695   + caddc 10697   · cmul 10699  cmin 11027   / cdiv 11454  2c2 11850  cz 12141   Odd codd 44693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-n0 12056  df-z 12142  df-odd 44695
This theorem is referenced by:  dfodd3  44718  odd2np1ALTV  44742  opoeALTV  44751  opeoALTV  44752
  Copyright terms: Public domain W3C validator