Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfodd6 Structured version   Visualization version   GIF version

Theorem dfodd6 47668
Description: Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.)
Assertion
Ref Expression
dfodd6 Odd = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)}
Distinct variable group:   𝑧,𝑖

Proof of Theorem dfodd6
StepHypRef Expression
1 dfodd2 47667 . 2 Odd = {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ}
2 simpr 484 . . . . . 6 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → ((𝑧 − 1) / 2) ∈ ℤ)
3 oveq2 7349 . . . . . . . . . 10 (𝑖 = ((𝑧 − 1) / 2) → (2 · 𝑖) = (2 · ((𝑧 − 1) / 2)))
4 peano2zm 12510 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → (𝑧 − 1) ∈ ℤ)
54zcnd 12573 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → (𝑧 − 1) ∈ ℂ)
6 2cnd 12198 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 2 ∈ ℂ)
7 2ne0 12224 . . . . . . . . . . . . . 14 2 ≠ 0
87a1i 11 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 2 ≠ 0)
95, 6, 83jca 1128 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → ((𝑧 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0))
109adantr 480 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → ((𝑧 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0))
11 divcan2 11779 . . . . . . . . . . 11 (((𝑧 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · ((𝑧 − 1) / 2)) = (𝑧 − 1))
1210, 11syl 17 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → (2 · ((𝑧 − 1) / 2)) = (𝑧 − 1))
133, 12sylan9eqr 2788 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → (2 · 𝑖) = (𝑧 − 1))
1413oveq1d 7356 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → ((2 · 𝑖) + 1) = ((𝑧 − 1) + 1))
15 zcn 12468 . . . . . . . . . . 11 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
16 npcan1 11537 . . . . . . . . . . 11 (𝑧 ∈ ℂ → ((𝑧 − 1) + 1) = 𝑧)
1715, 16syl 17 . . . . . . . . . 10 (𝑧 ∈ ℤ → ((𝑧 − 1) + 1) = 𝑧)
1817adantr 480 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → ((𝑧 − 1) + 1) = 𝑧)
1918adantr 480 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → ((𝑧 − 1) + 1) = 𝑧)
2014, 19eqtrd 2766 . . . . . . 7 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → ((2 · 𝑖) + 1) = 𝑧)
2120eqeq2d 2742 . . . . . 6 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → (𝑧 = ((2 · 𝑖) + 1) ↔ 𝑧 = 𝑧))
22 eqidd 2732 . . . . . 6 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → 𝑧 = 𝑧)
232, 21, 22rspcedvd 3574 . . . . 5 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1))
2423ex 412 . . . 4 (𝑧 ∈ ℤ → (((𝑧 − 1) / 2) ∈ ℤ → ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)))
25 oveq1 7348 . . . . . . . . 9 (𝑧 = ((2 · 𝑖) + 1) → (𝑧 − 1) = (((2 · 𝑖) + 1) − 1))
26 zcn 12468 . . . . . . . . . . 11 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
27 mulcl 11085 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (2 · 𝑖) ∈ ℂ)
286, 26, 27syl2an 596 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (2 · 𝑖) ∈ ℂ)
29 pncan1 11536 . . . . . . . . . 10 ((2 · 𝑖) ∈ ℂ → (((2 · 𝑖) + 1) − 1) = (2 · 𝑖))
3028, 29syl 17 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (((2 · 𝑖) + 1) − 1) = (2 · 𝑖))
3125, 30sylan9eqr 2788 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → (𝑧 − 1) = (2 · 𝑖))
3231oveq1d 7356 . . . . . . 7 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → ((𝑧 − 1) / 2) = ((2 · 𝑖) / 2))
3326adantl 481 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
34 2cnd 12198 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ)
357a1i 11 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ≠ 0)
3633, 34, 35divcan3d 11897 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((2 · 𝑖) / 2) = 𝑖)
3736adantr 480 . . . . . . 7 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → ((2 · 𝑖) / 2) = 𝑖)
3832, 37eqtrd 2766 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → ((𝑧 − 1) / 2) = 𝑖)
39 simpr 484 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
4039adantr 480 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → 𝑖 ∈ ℤ)
4138, 40eqeltrd 2831 . . . . 5 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → ((𝑧 − 1) / 2) ∈ ℤ)
4241rexlimdva2 3135 . . . 4 (𝑧 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1) → ((𝑧 − 1) / 2) ∈ ℤ))
4324, 42impbid 212 . . 3 (𝑧 ∈ ℤ → (((𝑧 − 1) / 2) ∈ ℤ ↔ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)))
4443rabbiia 3399 . 2 {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ} = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)}
451, 44eqtri 2754 1 Odd = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)}
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  {crab 3395  (class class class)co 7341  cc 10999  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006  cmin 11339   / cdiv 11769  2c2 12175  cz 12463   Odd codd 47656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464  df-odd 47658
This theorem is referenced by:  dfodd3  47681  odd2np1ALTV  47705  opoeALTV  47714  opeoALTV  47715
  Copyright terms: Public domain W3C validator