MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioopos Structured version   Visualization version   GIF version

Theorem ioopos 13345
Description: The set of positive reals expressed as an open interval. (Contributed by NM, 7-May-2007.)
Assertion
Ref Expression
ioopos (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥}

Proof of Theorem ioopos
StepHypRef Expression
1 0xr 11181 . . 3 0 ∈ ℝ*
2 pnfxr 11188 . . 3 +∞ ∈ ℝ*
3 iooval2 13299 . . 3 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (0(,)+∞) = {𝑥 ∈ ℝ ∣ (0 < 𝑥𝑥 < +∞)})
41, 2, 3mp2an 692 . 2 (0(,)+∞) = {𝑥 ∈ ℝ ∣ (0 < 𝑥𝑥 < +∞)}
5 ltpnf 13040 . . . 4 (𝑥 ∈ ℝ → 𝑥 < +∞)
65biantrud 531 . . 3 (𝑥 ∈ ℝ → (0 < 𝑥 ↔ (0 < 𝑥𝑥 < +∞)))
76rabbiia 3400 . 2 {𝑥 ∈ ℝ ∣ 0 < 𝑥} = {𝑥 ∈ ℝ ∣ (0 < 𝑥𝑥 < +∞)}
84, 7eqtr4i 2755 1 (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {crab 3396   class class class wbr 5095  (class class class)co 7353  cr 11027  0cc0 11028  +∞cpnf 11165  *cxr 11167   < clt 11168  (,)cioo 13266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-addrcl 11089  ax-rnegex 11099  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-ioo 13270
This theorem is referenced by:  ioorp  13346  repos  13367
  Copyright terms: Public domain W3C validator