MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioopos Structured version   Visualization version   GIF version

Theorem ioopos 13085
Description: The set of positive reals expressed as an open interval. (Contributed by NM, 7-May-2007.)
Assertion
Ref Expression
ioopos (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥}

Proof of Theorem ioopos
StepHypRef Expression
1 0xr 10953 . . 3 0 ∈ ℝ*
2 pnfxr 10960 . . 3 +∞ ∈ ℝ*
3 iooval2 13041 . . 3 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (0(,)+∞) = {𝑥 ∈ ℝ ∣ (0 < 𝑥𝑥 < +∞)})
41, 2, 3mp2an 688 . 2 (0(,)+∞) = {𝑥 ∈ ℝ ∣ (0 < 𝑥𝑥 < +∞)}
5 ltpnf 12785 . . . 4 (𝑥 ∈ ℝ → 𝑥 < +∞)
65biantrud 531 . . 3 (𝑥 ∈ ℝ → (0 < 𝑥 ↔ (0 < 𝑥𝑥 < +∞)))
76rabbiia 3396 . 2 {𝑥 ∈ ℝ ∣ 0 < 𝑥} = {𝑥 ∈ ℝ ∣ (0 < 𝑥𝑥 < +∞)}
84, 7eqtr4i 2769 1 (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  {crab 3067   class class class wbr 5070  (class class class)co 7255  cr 10801  0cc0 10802  +∞cpnf 10937  *cxr 10939   < clt 10940  (,)cioo 13008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-addrcl 10863  ax-rnegex 10873  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-ioo 13012
This theorem is referenced by:  ioorp  13086  repos  13107
  Copyright terms: Public domain W3C validator