MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioopos Structured version   Visualization version   GIF version

Theorem ioopos 12538
Description: The set of positive reals expressed as an open interval. (Contributed by NM, 7-May-2007.)
Assertion
Ref Expression
ioopos (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥}

Proof of Theorem ioopos
StepHypRef Expression
1 0xr 10403 . . 3 0 ∈ ℝ*
2 pnfxr 10410 . . 3 +∞ ∈ ℝ*
3 iooval2 12496 . . 3 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (0(,)+∞) = {𝑥 ∈ ℝ ∣ (0 < 𝑥𝑥 < +∞)})
41, 2, 3mp2an 685 . 2 (0(,)+∞) = {𝑥 ∈ ℝ ∣ (0 < 𝑥𝑥 < +∞)}
5 ltpnf 12240 . . . 4 (𝑥 ∈ ℝ → 𝑥 < +∞)
65biantrud 529 . . 3 (𝑥 ∈ ℝ → (0 < 𝑥 ↔ (0 < 𝑥𝑥 < +∞)))
76rabbiia 3397 . 2 {𝑥 ∈ ℝ ∣ 0 < 𝑥} = {𝑥 ∈ ℝ ∣ (0 < 𝑥𝑥 < +∞)}
84, 7eqtr4i 2852 1 (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥}
Colors of variables: wff setvar class
Syntax hints:  wa 386   = wceq 1658  wcel 2166  {crab 3121   class class class wbr 4873  (class class class)co 6905  cr 10251  0cc0 10252  +∞cpnf 10388  *cxr 10390   < clt 10391  (,)cioo 12463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-addrcl 10313  ax-rnegex 10323  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-po 5263  df-so 5264  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-1st 7428  df-2nd 7429  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-ioo 12467
This theorem is referenced by:  ioorp  12539  repos  12559
  Copyright terms: Public domain W3C validator