| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfodd4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
| Ref | Expression |
|---|---|
| dfodd4 | ⊢ Odd = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) = 1} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfodd2 47673 | . 2 ⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ} | |
| 2 | peano2zm 12515 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → (𝑧 − 1) ∈ ℤ) | |
| 3 | 2 | zred 12577 | . . . . 5 ⊢ (𝑧 ∈ ℤ → (𝑧 − 1) ∈ ℝ) |
| 4 | 2rp 12895 | . . . . 5 ⊢ 2 ∈ ℝ+ | |
| 5 | mod0 13780 | . . . . 5 ⊢ (((𝑧 − 1) ∈ ℝ ∧ 2 ∈ ℝ+) → (((𝑧 − 1) mod 2) = 0 ↔ ((𝑧 − 1) / 2) ∈ ℤ)) | |
| 6 | 3, 4, 5 | sylancl 586 | . . . 4 ⊢ (𝑧 ∈ ℤ → (((𝑧 − 1) mod 2) = 0 ↔ ((𝑧 − 1) / 2) ∈ ℤ)) |
| 7 | zre 12472 | . . . . 5 ⊢ (𝑧 ∈ ℤ → 𝑧 ∈ ℝ) | |
| 8 | 2re 12199 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ (𝑧 ∈ ℤ → 2 ∈ ℝ) |
| 10 | 1lt2 12291 | . . . . . 6 ⊢ 1 < 2 | |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑧 ∈ ℤ → 1 < 2) |
| 12 | m1mod0mod1 47391 | . . . . 5 ⊢ ((𝑧 ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2) → (((𝑧 − 1) mod 2) = 0 ↔ (𝑧 mod 2) = 1)) | |
| 13 | 7, 9, 11, 12 | syl3anc 1373 | . . . 4 ⊢ (𝑧 ∈ ℤ → (((𝑧 − 1) mod 2) = 0 ↔ (𝑧 mod 2) = 1)) |
| 14 | 6, 13 | bitr3d 281 | . . 3 ⊢ (𝑧 ∈ ℤ → (((𝑧 − 1) / 2) ∈ ℤ ↔ (𝑧 mod 2) = 1)) |
| 15 | 14 | rabbiia 3399 | . 2 ⊢ {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ} = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) = 1} |
| 16 | 1, 15 | eqtri 2754 | 1 ⊢ Odd = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) = 1} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 {crab 3395 class class class wbr 5091 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 < clt 11146 − cmin 11344 / cdiv 11774 2c2 12180 ℤcz 12468 ℝ+crp 12890 mod cmo 13773 Odd codd 47662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fl 13696 df-mod 13774 df-odd 47664 |
| This theorem is referenced by: dfodd5 47697 |
| Copyright terms: Public domain | W3C validator |