Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeven4 Structured version   Visualization version   GIF version

Theorem dfeven4 47625
Description: Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.)
Assertion
Ref Expression
dfeven4 Even = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)}
Distinct variable group:   𝑧,𝑖

Proof of Theorem dfeven4
StepHypRef Expression
1 df-even 47613 . 2 Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ}
2 simpr 484 . . . . . 6 ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → (𝑧 / 2) ∈ ℤ)
3 oveq2 7439 . . . . . . . 8 (𝑖 = (𝑧 / 2) → (2 · 𝑖) = (2 · (𝑧 / 2)))
43eqeq2d 2748 . . . . . . 7 (𝑖 = (𝑧 / 2) → (𝑧 = (2 · 𝑖) ↔ 𝑧 = (2 · (𝑧 / 2))))
54adantl 481 . . . . . 6 (((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) ∧ 𝑖 = (𝑧 / 2)) → (𝑧 = (2 · 𝑖) ↔ 𝑧 = (2 · (𝑧 / 2))))
6 zcn 12618 . . . . . . . . 9 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
76adantr 480 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → 𝑧 ∈ ℂ)
8 2cnd 12344 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → 2 ∈ ℂ)
9 2ne0 12370 . . . . . . . . 9 2 ≠ 0
109a1i 11 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → 2 ≠ 0)
117, 8, 10divcan2d 12045 . . . . . . 7 ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → (2 · (𝑧 / 2)) = 𝑧)
1211eqcomd 2743 . . . . . 6 ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → 𝑧 = (2 · (𝑧 / 2)))
132, 5, 12rspcedvd 3624 . . . . 5 ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖))
1413ex 412 . . . 4 (𝑧 ∈ ℤ → ((𝑧 / 2) ∈ ℤ → ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)))
15 oveq1 7438 . . . . . . 7 (𝑧 = (2 · 𝑖) → (𝑧 / 2) = ((2 · 𝑖) / 2))
16 zcn 12618 . . . . . . . . 9 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
1716adantl 481 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
18 2cnd 12344 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ)
199a1i 11 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ≠ 0)
2017, 18, 19divcan3d 12048 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((2 · 𝑖) / 2) = 𝑖)
2115, 20sylan9eqr 2799 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = (2 · 𝑖)) → (𝑧 / 2) = 𝑖)
22 simpr 484 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
2322adantr 480 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = (2 · 𝑖)) → 𝑖 ∈ ℤ)
2421, 23eqeltrd 2841 . . . . 5 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = (2 · 𝑖)) → (𝑧 / 2) ∈ ℤ)
2524rexlimdva2 3157 . . . 4 (𝑧 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖) → (𝑧 / 2) ∈ ℤ))
2614, 25impbid 212 . . 3 (𝑧 ∈ ℤ → ((𝑧 / 2) ∈ ℤ ↔ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)))
2726rabbiia 3440 . 2 {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)}
281, 27eqtri 2765 1 Even = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070  {crab 3436  (class class class)co 7431  cc 11153  0cc0 11155   · cmul 11160   / cdiv 11920  2c2 12321  cz 12613   Even ceven 47611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-2 12329  df-z 12614  df-even 47613
This theorem is referenced by:  m1expevenALTV  47634  dfeven2  47636  opoeALTV  47670  opeoALTV  47671
  Copyright terms: Public domain W3C validator