| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeven4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
| Ref | Expression |
|---|---|
| dfeven4 | ⊢ Even = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-even 47640 | . 2 ⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} | |
| 2 | simpr 484 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → (𝑧 / 2) ∈ ℤ) | |
| 3 | oveq2 7413 | . . . . . . . 8 ⊢ (𝑖 = (𝑧 / 2) → (2 · 𝑖) = (2 · (𝑧 / 2))) | |
| 4 | 3 | eqeq2d 2746 | . . . . . . 7 ⊢ (𝑖 = (𝑧 / 2) → (𝑧 = (2 · 𝑖) ↔ 𝑧 = (2 · (𝑧 / 2)))) |
| 5 | 4 | adantl 481 | . . . . . 6 ⊢ (((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) ∧ 𝑖 = (𝑧 / 2)) → (𝑧 = (2 · 𝑖) ↔ 𝑧 = (2 · (𝑧 / 2)))) |
| 6 | zcn 12593 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℤ → 𝑧 ∈ ℂ) | |
| 7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → 𝑧 ∈ ℂ) |
| 8 | 2cnd 12318 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → 2 ∈ ℂ) | |
| 9 | 2ne0 12344 | . . . . . . . . 9 ⊢ 2 ≠ 0 | |
| 10 | 9 | a1i 11 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → 2 ≠ 0) |
| 11 | 7, 8, 10 | divcan2d 12019 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → (2 · (𝑧 / 2)) = 𝑧) |
| 12 | 11 | eqcomd 2741 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → 𝑧 = (2 · (𝑧 / 2))) |
| 13 | 2, 5, 12 | rspcedvd 3603 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)) |
| 14 | 13 | ex 412 | . . . 4 ⊢ (𝑧 ∈ ℤ → ((𝑧 / 2) ∈ ℤ → ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖))) |
| 15 | oveq1 7412 | . . . . . . 7 ⊢ (𝑧 = (2 · 𝑖) → (𝑧 / 2) = ((2 · 𝑖) / 2)) | |
| 16 | zcn 12593 | . . . . . . . . 9 ⊢ (𝑖 ∈ ℤ → 𝑖 ∈ ℂ) | |
| 17 | 16 | adantl 481 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ) |
| 18 | 2cnd 12318 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ) | |
| 19 | 9 | a1i 11 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ≠ 0) |
| 20 | 17, 18, 19 | divcan3d 12022 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((2 · 𝑖) / 2) = 𝑖) |
| 21 | 15, 20 | sylan9eqr 2792 | . . . . . 6 ⊢ (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = (2 · 𝑖)) → (𝑧 / 2) = 𝑖) |
| 22 | simpr 484 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ) | |
| 23 | 22 | adantr 480 | . . . . . 6 ⊢ (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = (2 · 𝑖)) → 𝑖 ∈ ℤ) |
| 24 | 21, 23 | eqeltrd 2834 | . . . . 5 ⊢ (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = (2 · 𝑖)) → (𝑧 / 2) ∈ ℤ) |
| 25 | 24 | rexlimdva2 3143 | . . . 4 ⊢ (𝑧 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖) → (𝑧 / 2) ∈ ℤ)) |
| 26 | 14, 25 | impbid 212 | . . 3 ⊢ (𝑧 ∈ ℤ → ((𝑧 / 2) ∈ ℤ ↔ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖))) |
| 27 | 26 | rabbiia 3419 | . 2 ⊢ {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} |
| 28 | 1, 27 | eqtri 2758 | 1 ⊢ Even = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 {crab 3415 (class class class)co 7405 ℂcc 11127 0cc0 11129 · cmul 11134 / cdiv 11894 2c2 12295 ℤcz 12588 Even ceven 47638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-z 12589 df-even 47640 |
| This theorem is referenced by: m1expevenALTV 47661 dfeven2 47663 opoeALTV 47697 opeoALTV 47698 |
| Copyright terms: Public domain | W3C validator |