![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeven4 | Structured version Visualization version GIF version |
Description: Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
Ref | Expression |
---|---|
dfeven4 | ⊢ Even = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-even 47551 | . 2 ⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} | |
2 | simpr 484 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → (𝑧 / 2) ∈ ℤ) | |
3 | oveq2 7439 | . . . . . . . 8 ⊢ (𝑖 = (𝑧 / 2) → (2 · 𝑖) = (2 · (𝑧 / 2))) | |
4 | 3 | eqeq2d 2746 | . . . . . . 7 ⊢ (𝑖 = (𝑧 / 2) → (𝑧 = (2 · 𝑖) ↔ 𝑧 = (2 · (𝑧 / 2)))) |
5 | 4 | adantl 481 | . . . . . 6 ⊢ (((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) ∧ 𝑖 = (𝑧 / 2)) → (𝑧 = (2 · 𝑖) ↔ 𝑧 = (2 · (𝑧 / 2)))) |
6 | zcn 12616 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℤ → 𝑧 ∈ ℂ) | |
7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → 𝑧 ∈ ℂ) |
8 | 2cnd 12342 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → 2 ∈ ℂ) | |
9 | 2ne0 12368 | . . . . . . . . 9 ⊢ 2 ≠ 0 | |
10 | 9 | a1i 11 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → 2 ≠ 0) |
11 | 7, 8, 10 | divcan2d 12043 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → (2 · (𝑧 / 2)) = 𝑧) |
12 | 11 | eqcomd 2741 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → 𝑧 = (2 · (𝑧 / 2))) |
13 | 2, 5, 12 | rspcedvd 3624 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)) |
14 | 13 | ex 412 | . . . 4 ⊢ (𝑧 ∈ ℤ → ((𝑧 / 2) ∈ ℤ → ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖))) |
15 | oveq1 7438 | . . . . . . 7 ⊢ (𝑧 = (2 · 𝑖) → (𝑧 / 2) = ((2 · 𝑖) / 2)) | |
16 | zcn 12616 | . . . . . . . . 9 ⊢ (𝑖 ∈ ℤ → 𝑖 ∈ ℂ) | |
17 | 16 | adantl 481 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ) |
18 | 2cnd 12342 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ) | |
19 | 9 | a1i 11 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ≠ 0) |
20 | 17, 18, 19 | divcan3d 12046 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((2 · 𝑖) / 2) = 𝑖) |
21 | 15, 20 | sylan9eqr 2797 | . . . . . 6 ⊢ (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = (2 · 𝑖)) → (𝑧 / 2) = 𝑖) |
22 | simpr 484 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ) | |
23 | 22 | adantr 480 | . . . . . 6 ⊢ (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = (2 · 𝑖)) → 𝑖 ∈ ℤ) |
24 | 21, 23 | eqeltrd 2839 | . . . . 5 ⊢ (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = (2 · 𝑖)) → (𝑧 / 2) ∈ ℤ) |
25 | 24 | rexlimdva2 3155 | . . . 4 ⊢ (𝑧 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖) → (𝑧 / 2) ∈ ℤ)) |
26 | 14, 25 | impbid 212 | . . 3 ⊢ (𝑧 ∈ ℤ → ((𝑧 / 2) ∈ ℤ ↔ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖))) |
27 | 26 | rabbiia 3437 | . 2 ⊢ {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} |
28 | 1, 27 | eqtri 2763 | 1 ⊢ Even = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 {crab 3433 (class class class)co 7431 ℂcc 11151 0cc0 11153 · cmul 11158 / cdiv 11918 2c2 12319 ℤcz 12611 Even ceven 47549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-2 12327 df-z 12612 df-even 47551 |
This theorem is referenced by: m1expevenALTV 47572 dfeven2 47574 opoeALTV 47608 opeoALTV 47609 |
Copyright terms: Public domain | W3C validator |