Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeven4 | Structured version Visualization version GIF version |
Description: Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
Ref | Expression |
---|---|
dfeven4 | ⊢ Even = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-even 44751 | . 2 ⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} | |
2 | simpr 488 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → (𝑧 / 2) ∈ ℤ) | |
3 | oveq2 7221 | . . . . . . . 8 ⊢ (𝑖 = (𝑧 / 2) → (2 · 𝑖) = (2 · (𝑧 / 2))) | |
4 | 3 | eqeq2d 2748 | . . . . . . 7 ⊢ (𝑖 = (𝑧 / 2) → (𝑧 = (2 · 𝑖) ↔ 𝑧 = (2 · (𝑧 / 2)))) |
5 | 4 | adantl 485 | . . . . . 6 ⊢ (((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) ∧ 𝑖 = (𝑧 / 2)) → (𝑧 = (2 · 𝑖) ↔ 𝑧 = (2 · (𝑧 / 2)))) |
6 | zcn 12181 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℤ → 𝑧 ∈ ℂ) | |
7 | 6 | adantr 484 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → 𝑧 ∈ ℂ) |
8 | 2cnd 11908 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → 2 ∈ ℂ) | |
9 | 2ne0 11934 | . . . . . . . . 9 ⊢ 2 ≠ 0 | |
10 | 9 | a1i 11 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → 2 ≠ 0) |
11 | 7, 8, 10 | divcan2d 11610 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → (2 · (𝑧 / 2)) = 𝑧) |
12 | 11 | eqcomd 2743 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → 𝑧 = (2 · (𝑧 / 2))) |
13 | 2, 5, 12 | rspcedvd 3540 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)) |
14 | 13 | ex 416 | . . . 4 ⊢ (𝑧 ∈ ℤ → ((𝑧 / 2) ∈ ℤ → ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖))) |
15 | oveq1 7220 | . . . . . . 7 ⊢ (𝑧 = (2 · 𝑖) → (𝑧 / 2) = ((2 · 𝑖) / 2)) | |
16 | zcn 12181 | . . . . . . . . 9 ⊢ (𝑖 ∈ ℤ → 𝑖 ∈ ℂ) | |
17 | 16 | adantl 485 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ) |
18 | 2cnd 11908 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ) | |
19 | 9 | a1i 11 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ≠ 0) |
20 | 17, 18, 19 | divcan3d 11613 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((2 · 𝑖) / 2) = 𝑖) |
21 | 15, 20 | sylan9eqr 2800 | . . . . . 6 ⊢ (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = (2 · 𝑖)) → (𝑧 / 2) = 𝑖) |
22 | simpr 488 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ) | |
23 | 22 | adantr 484 | . . . . . 6 ⊢ (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = (2 · 𝑖)) → 𝑖 ∈ ℤ) |
24 | 21, 23 | eqeltrd 2838 | . . . . 5 ⊢ (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = (2 · 𝑖)) → (𝑧 / 2) ∈ ℤ) |
25 | 24 | rexlimdva2 3206 | . . . 4 ⊢ (𝑧 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖) → (𝑧 / 2) ∈ ℤ)) |
26 | 14, 25 | impbid 215 | . . 3 ⊢ (𝑧 ∈ ℤ → ((𝑧 / 2) ∈ ℤ ↔ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖))) |
27 | 26 | rabbiia 3382 | . 2 ⊢ {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} |
28 | 1, 27 | eqtri 2765 | 1 ⊢ Even = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∃wrex 3062 {crab 3065 (class class class)co 7213 ℂcc 10727 0cc0 10729 · cmul 10734 / cdiv 11489 2c2 11885 ℤcz 12176 Even ceven 44749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-2 11893 df-z 12177 df-even 44751 |
This theorem is referenced by: m1expevenALTV 44772 dfeven2 44774 opoeALTV 44808 opeoALTV 44809 |
Copyright terms: Public domain | W3C validator |