Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeven2 Structured version   Visualization version   GIF version

Theorem dfeven2 47633
Description: Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.)
Assertion
Ref Expression
dfeven2 Even = {𝑧 ∈ ℤ ∣ 2 ∥ 𝑧}

Proof of Theorem dfeven2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 dfeven4 47622 . 2 Even = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)}
2 eqcom 2736 . . . . . 6 (𝑧 = (2 · 𝑖) ↔ (2 · 𝑖) = 𝑧)
3 2cnd 12206 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ)
4 zcn 12476 . . . . . . . . 9 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
54adantl 481 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
63, 5mulcomd 11136 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (2 · 𝑖) = (𝑖 · 2))
76eqeq1d 2731 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((2 · 𝑖) = 𝑧 ↔ (𝑖 · 2) = 𝑧))
82, 7bitrid 283 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑧 = (2 · 𝑖) ↔ (𝑖 · 2) = 𝑧))
98rexbidva 3151 . . . 4 (𝑧 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖) ↔ ∃𝑖 ∈ ℤ (𝑖 · 2) = 𝑧))
10 2z 12507 . . . . 5 2 ∈ ℤ
11 divides 16165 . . . . 5 ((2 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 ∥ 𝑧 ↔ ∃𝑖 ∈ ℤ (𝑖 · 2) = 𝑧))
1210, 11mpan 690 . . . 4 (𝑧 ∈ ℤ → (2 ∥ 𝑧 ↔ ∃𝑖 ∈ ℤ (𝑖 · 2) = 𝑧))
139, 12bitr4d 282 . . 3 (𝑧 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖) ↔ 2 ∥ 𝑧))
1413rabbiia 3398 . 2 {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} = {𝑧 ∈ ℤ ∣ 2 ∥ 𝑧}
151, 14eqtri 2752 1 Even = {𝑧 ∈ ℤ ∣ 2 ∥ 𝑧}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3394   class class class wbr 5092  (class class class)co 7349  cc 11007   · cmul 11014  2c2 12183  cz 12471  cdvds 16163   Even ceven 47608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-z 12472  df-dvds 16164  df-even 47610
This theorem is referenced by:  iseven2  47635
  Copyright terms: Public domain W3C validator