Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfodd3 Structured version   Visualization version   GIF version

Theorem dfodd3 44108
Description: Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.)
Assertion
Ref Expression
dfodd3 Odd = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}

Proof of Theorem dfodd3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 dfodd6 44095 . 2 Odd = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)}
2 eqcom 2829 . . . . . 6 (𝑧 = ((2 · 𝑖) + 1) ↔ ((2 · 𝑖) + 1) = 𝑧)
32a1i 11 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑧 = ((2 · 𝑖) + 1) ↔ ((2 · 𝑖) + 1) = 𝑧))
43rexbidva 3282 . . . 4 (𝑧 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1) ↔ ∃𝑖 ∈ ℤ ((2 · 𝑖) + 1) = 𝑧))
5 odd2np1 15681 . . . 4 (𝑧 ∈ ℤ → (¬ 2 ∥ 𝑧 ↔ ∃𝑖 ∈ ℤ ((2 · 𝑖) + 1) = 𝑧))
64, 5bitr4d 285 . . 3 (𝑧 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1) ↔ ¬ 2 ∥ 𝑧))
76rabbiia 3447 . 2 {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)} = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
81, 7eqtri 2845 1 Odd = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399   = wceq 1538  wcel 2114  wrex 3131  {crab 3134   class class class wbr 5042  (class class class)co 7140  1c1 10527   + caddc 10529   · cmul 10531  2c2 11680  cz 11969  cdvds 15598   Odd codd 44083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-dvds 15599  df-odd 44085
This theorem is referenced by:  isodd3  44110  tgoldbachgtALTV  44270
  Copyright terms: Public domain W3C validator