Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  readdid1addid2d Structured version   Visualization version   GIF version

Theorem readdid1addid2d 40294
Description: Given some real number 𝐵 where 𝐴 acts like a right additive identity, derive that 𝐴 is a left additive identity. Note that the hypothesis is weaker than proving that 𝐴 is a right additive identity (for all numbers). Although, if there is a right additive identity, then by readdcan 11149, 𝐴 is the right additive identity. (Contributed by Steven Nguyen, 14-Jan-2023.)
Hypotheses
Ref Expression
readdid1addid2d.a (𝜑𝐴 ∈ ℝ)
readdid1addid2d.b (𝜑𝐵 ∈ ℝ)
readdid1addid2d.1 (𝜑 → (𝐵 + 𝐴) = 𝐵)
Assertion
Ref Expression
readdid1addid2d ((𝜑𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶)

Proof of Theorem readdid1addid2d
StepHypRef Expression
1 readdid1addid2d.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
21adantr 481 . . . . 5 ((𝜑𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
32recnd 11003 . . . 4 ((𝜑𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
4 readdid1addid2d.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
54adantr 481 . . . . 5 ((𝜑𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
65recnd 11003 . . . 4 ((𝜑𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
7 simpr 485 . . . . 5 ((𝜑𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
87recnd 11003 . . . 4 ((𝜑𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
93, 6, 8addassd 10997 . . 3 ((𝜑𝐶 ∈ ℝ) → ((𝐵 + 𝐴) + 𝐶) = (𝐵 + (𝐴 + 𝐶)))
10 readdid1addid2d.1 . . . . 5 (𝜑 → (𝐵 + 𝐴) = 𝐵)
1110adantr 481 . . . 4 ((𝜑𝐶 ∈ ℝ) → (𝐵 + 𝐴) = 𝐵)
1211oveq1d 7290 . . 3 ((𝜑𝐶 ∈ ℝ) → ((𝐵 + 𝐴) + 𝐶) = (𝐵 + 𝐶))
139, 12eqtr3d 2780 . 2 ((𝜑𝐶 ∈ ℝ) → (𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶))
145, 7readdcld 11004 . . 3 ((𝜑𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
15 readdcan 11149 . . 3 (((𝐴 + 𝐶) ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶) ↔ (𝐴 + 𝐶) = 𝐶))
1614, 7, 2, 15syl3anc 1370 . 2 ((𝜑𝐶 ∈ ℝ) → ((𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶) ↔ (𝐴 + 𝐶) = 𝐶))
1713, 16mpbid 231 1 ((𝜑𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  (class class class)co 7275  cr 10870   + caddc 10874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-addrcl 10932  ax-addass 10936  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014
This theorem is referenced by:  reneg0addid2  40357
  Copyright terms: Public domain W3C validator