Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > readdid1addid2d | Structured version Visualization version GIF version |
Description: Given some real number 𝐵 where 𝐴 acts like a right additive identity, derive that 𝐴 is a left additive identity. Note that the hypothesis is weaker than proving that 𝐴 is a right additive identity (for all numbers). Although, if there is a right additive identity, then by readdcan 11149, 𝐴 is the right additive identity. (Contributed by Steven Nguyen, 14-Jan-2023.) |
Ref | Expression |
---|---|
readdid1addid2d.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
readdid1addid2d.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
readdid1addid2d.1 | ⊢ (𝜑 → (𝐵 + 𝐴) = 𝐵) |
Ref | Expression |
---|---|
readdid1addid2d | ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | readdid1addid2d.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
2 | 1 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ) |
3 | 2 | recnd 11003 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ) |
4 | readdid1addid2d.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ) |
6 | 5 | recnd 11003 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ) |
7 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | |
8 | 7 | recnd 11003 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ) |
9 | 3, 6, 8 | addassd 10997 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐴) + 𝐶) = (𝐵 + (𝐴 + 𝐶))) |
10 | readdid1addid2d.1 | . . . . 5 ⊢ (𝜑 → (𝐵 + 𝐴) = 𝐵) | |
11 | 10 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐴) = 𝐵) |
12 | 11 | oveq1d 7290 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐴) + 𝐶) = (𝐵 + 𝐶)) |
13 | 9, 12 | eqtr3d 2780 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶)) |
14 | 5, 7 | readdcld 11004 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ) |
15 | readdcan 11149 | . . 3 ⊢ (((𝐴 + 𝐶) ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶) ↔ (𝐴 + 𝐶) = 𝐶)) | |
16 | 14, 7, 2, 15 | syl3anc 1370 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → ((𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶) ↔ (𝐴 + 𝐶) = 𝐶)) |
17 | 13, 16 | mpbid 231 | 1 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℝcr 10870 + caddc 10874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-addrcl 10932 ax-addass 10936 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 |
This theorem is referenced by: reneg0addid2 40357 |
Copyright terms: Public domain | W3C validator |