![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limcvallem | Structured version Visualization version GIF version |
Description: Lemma for ellimc 25928. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
limcval.j | ⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) |
limcval.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
limcvallem.g | ⊢ 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧))) |
Ref | Expression |
---|---|
limcvallem | ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4554 | . . . 4 ⊢ (𝑧 = 𝐵 → if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧)) = 𝐶) | |
2 | 1 | eleq1d 2829 | . . 3 ⊢ (𝑧 = 𝐵 → (if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧)) ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
3 | limcval.j | . . . . . 6 ⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) | |
4 | limcval.k | . . . . . . . 8 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
5 | 4 | cnfldtopon 24824 | . . . . . . 7 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
6 | simpl2 1192 | . . . . . . . 8 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐴 ⊆ ℂ) | |
7 | simpl3 1193 | . . . . . . . . 9 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐵 ∈ ℂ) | |
8 | 7 | snssd 4834 | . . . . . . . 8 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → {𝐵} ⊆ ℂ) |
9 | 6, 8 | unssd 4215 | . . . . . . 7 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐴 ∪ {𝐵}) ⊆ ℂ) |
10 | resttopon 23190 | . . . . . . 7 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ (𝐴 ∪ {𝐵}) ⊆ ℂ) → (𝐾 ↾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵}))) | |
11 | 5, 9, 10 | sylancr 586 | . . . . . 6 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐾 ↾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵}))) |
12 | 3, 11 | eqeltrid 2848 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐽 ∈ (TopOn‘(𝐴 ∪ {𝐵}))) |
13 | 5 | a1i 11 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐾 ∈ (TopOn‘ℂ)) |
14 | simpr 484 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) | |
15 | cnpf2 23279 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘(𝐴 ∪ {𝐵})) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐺:(𝐴 ∪ {𝐵})⟶ℂ) | |
16 | 12, 13, 14, 15 | syl3anc 1371 | . . . 4 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐺:(𝐴 ∪ {𝐵})⟶ℂ) |
17 | limcvallem.g | . . . . 5 ⊢ 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧))) | |
18 | 17 | fmpt 7144 | . . . 4 ⊢ (∀𝑧 ∈ (𝐴 ∪ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧)) ∈ ℂ ↔ 𝐺:(𝐴 ∪ {𝐵})⟶ℂ) |
19 | 16, 18 | sylibr 234 | . . 3 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → ∀𝑧 ∈ (𝐴 ∪ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧)) ∈ ℂ) |
20 | ssun2 4202 | . . . 4 ⊢ {𝐵} ⊆ (𝐴 ∪ {𝐵}) | |
21 | snssg 4808 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵}))) | |
22 | 7, 21 | syl 17 | . . . 4 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵}))) |
23 | 20, 22 | mpbiri 258 | . . 3 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐵 ∈ (𝐴 ∪ {𝐵})) |
24 | 2, 19, 23 | rspcdva 3636 | . 2 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐶 ∈ ℂ) |
25 | 24 | ex 412 | 1 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∪ cun 3974 ⊆ wss 3976 ifcif 4548 {csn 4648 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ↾t crest 17480 TopOpenctopn 17481 ℂfldccnfld 21387 TopOnctopon 22937 CnP ccnp 23254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fi 9480 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-fz 13568 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-rest 17482 df-topn 17483 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cnp 23257 df-xms 24351 df-ms 24352 |
This theorem is referenced by: limcfval 25927 ellimc 25928 |
Copyright terms: Public domain | W3C validator |