![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limcvallem | Structured version Visualization version GIF version |
Description: Lemma for ellimc 25623. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
limcval.j | β’ π½ = (πΎ βΎt (π΄ βͺ {π΅})) |
limcval.k | β’ πΎ = (TopOpenββfld) |
limcvallem.g | β’ πΊ = (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, πΆ, (πΉβπ§))) |
Ref | Expression |
---|---|
limcvallem | β’ ((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β (πΊ β ((π½ CnP πΎ)βπ΅) β πΆ β β)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4535 | . . . 4 β’ (π§ = π΅ β if(π§ = π΅, πΆ, (πΉβπ§)) = πΆ) | |
2 | 1 | eleq1d 2817 | . . 3 β’ (π§ = π΅ β (if(π§ = π΅, πΆ, (πΉβπ§)) β β β πΆ β β)) |
3 | limcval.j | . . . . . 6 β’ π½ = (πΎ βΎt (π΄ βͺ {π΅})) | |
4 | limcval.k | . . . . . . . 8 β’ πΎ = (TopOpenββfld) | |
5 | 4 | cnfldtopon 24520 | . . . . . . 7 β’ πΎ β (TopOnββ) |
6 | simpl2 1191 | . . . . . . . 8 β’ (((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β§ πΊ β ((π½ CnP πΎ)βπ΅)) β π΄ β β) | |
7 | simpl3 1192 | . . . . . . . . 9 β’ (((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β§ πΊ β ((π½ CnP πΎ)βπ΅)) β π΅ β β) | |
8 | 7 | snssd 4813 | . . . . . . . 8 β’ (((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β§ πΊ β ((π½ CnP πΎ)βπ΅)) β {π΅} β β) |
9 | 6, 8 | unssd 4187 | . . . . . . 7 β’ (((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β§ πΊ β ((π½ CnP πΎ)βπ΅)) β (π΄ βͺ {π΅}) β β) |
10 | resttopon 22886 | . . . . . . 7 β’ ((πΎ β (TopOnββ) β§ (π΄ βͺ {π΅}) β β) β (πΎ βΎt (π΄ βͺ {π΅})) β (TopOnβ(π΄ βͺ {π΅}))) | |
11 | 5, 9, 10 | sylancr 586 | . . . . . 6 β’ (((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β§ πΊ β ((π½ CnP πΎ)βπ΅)) β (πΎ βΎt (π΄ βͺ {π΅})) β (TopOnβ(π΄ βͺ {π΅}))) |
12 | 3, 11 | eqeltrid 2836 | . . . . 5 β’ (((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β§ πΊ β ((π½ CnP πΎ)βπ΅)) β π½ β (TopOnβ(π΄ βͺ {π΅}))) |
13 | 5 | a1i 11 | . . . . 5 β’ (((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β§ πΊ β ((π½ CnP πΎ)βπ΅)) β πΎ β (TopOnββ)) |
14 | simpr 484 | . . . . 5 β’ (((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β§ πΊ β ((π½ CnP πΎ)βπ΅)) β πΊ β ((π½ CnP πΎ)βπ΅)) | |
15 | cnpf2 22975 | . . . . 5 β’ ((π½ β (TopOnβ(π΄ βͺ {π΅})) β§ πΎ β (TopOnββ) β§ πΊ β ((π½ CnP πΎ)βπ΅)) β πΊ:(π΄ βͺ {π΅})βΆβ) | |
16 | 12, 13, 14, 15 | syl3anc 1370 | . . . 4 β’ (((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β§ πΊ β ((π½ CnP πΎ)βπ΅)) β πΊ:(π΄ βͺ {π΅})βΆβ) |
17 | limcvallem.g | . . . . 5 β’ πΊ = (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, πΆ, (πΉβπ§))) | |
18 | 17 | fmpt 7112 | . . . 4 β’ (βπ§ β (π΄ βͺ {π΅})if(π§ = π΅, πΆ, (πΉβπ§)) β β β πΊ:(π΄ βͺ {π΅})βΆβ) |
19 | 16, 18 | sylibr 233 | . . 3 β’ (((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β§ πΊ β ((π½ CnP πΎ)βπ΅)) β βπ§ β (π΄ βͺ {π΅})if(π§ = π΅, πΆ, (πΉβπ§)) β β) |
20 | ssun2 4174 | . . . 4 β’ {π΅} β (π΄ βͺ {π΅}) | |
21 | snssg 4788 | . . . . 5 β’ (π΅ β β β (π΅ β (π΄ βͺ {π΅}) β {π΅} β (π΄ βͺ {π΅}))) | |
22 | 7, 21 | syl 17 | . . . 4 β’ (((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β§ πΊ β ((π½ CnP πΎ)βπ΅)) β (π΅ β (π΄ βͺ {π΅}) β {π΅} β (π΄ βͺ {π΅}))) |
23 | 20, 22 | mpbiri 257 | . . 3 β’ (((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β§ πΊ β ((π½ CnP πΎ)βπ΅)) β π΅ β (π΄ βͺ {π΅})) |
24 | 2, 19, 23 | rspcdva 3614 | . 2 β’ (((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β§ πΊ β ((π½ CnP πΎ)βπ΅)) β πΆ β β) |
25 | 24 | ex 412 | 1 β’ ((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β (πΊ β ((π½ CnP πΎ)βπ΅) β πΆ β β)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 βwral 3060 βͺ cun 3947 β wss 3949 ifcif 4529 {csn 4629 β¦ cmpt 5232 βΆwf 6540 βcfv 6544 (class class class)co 7412 βcc 11111 βΎt crest 17371 TopOpenctopn 17372 βfldccnfld 21145 TopOnctopon 22633 CnP ccnp 22950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fi 9409 df-sup 9440 df-inf 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-fz 13490 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-struct 17085 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-mulr 17216 df-starv 17217 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-rest 17373 df-topn 17374 df-topgen 17394 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-cnfld 21146 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-cnp 22953 df-xms 24047 df-ms 24048 |
This theorem is referenced by: limcfval 25622 ellimc 25623 |
Copyright terms: Public domain | W3C validator |