![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limcvallem | Structured version Visualization version GIF version |
Description: Lemma for ellimc 25846. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
limcval.j | ⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) |
limcval.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
limcvallem.g | ⊢ 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧))) |
Ref | Expression |
---|---|
limcvallem | ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4536 | . . . 4 ⊢ (𝑧 = 𝐵 → if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧)) = 𝐶) | |
2 | 1 | eleq1d 2810 | . . 3 ⊢ (𝑧 = 𝐵 → (if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧)) ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
3 | limcval.j | . . . . . 6 ⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) | |
4 | limcval.k | . . . . . . . 8 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
5 | 4 | cnfldtopon 24743 | . . . . . . 7 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
6 | simpl2 1189 | . . . . . . . 8 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐴 ⊆ ℂ) | |
7 | simpl3 1190 | . . . . . . . . 9 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐵 ∈ ℂ) | |
8 | 7 | snssd 4814 | . . . . . . . 8 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → {𝐵} ⊆ ℂ) |
9 | 6, 8 | unssd 4184 | . . . . . . 7 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐴 ∪ {𝐵}) ⊆ ℂ) |
10 | resttopon 23109 | . . . . . . 7 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ (𝐴 ∪ {𝐵}) ⊆ ℂ) → (𝐾 ↾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵}))) | |
11 | 5, 9, 10 | sylancr 585 | . . . . . 6 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐾 ↾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵}))) |
12 | 3, 11 | eqeltrid 2829 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐽 ∈ (TopOn‘(𝐴 ∪ {𝐵}))) |
13 | 5 | a1i 11 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐾 ∈ (TopOn‘ℂ)) |
14 | simpr 483 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) | |
15 | cnpf2 23198 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘(𝐴 ∪ {𝐵})) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐺:(𝐴 ∪ {𝐵})⟶ℂ) | |
16 | 12, 13, 14, 15 | syl3anc 1368 | . . . 4 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐺:(𝐴 ∪ {𝐵})⟶ℂ) |
17 | limcvallem.g | . . . . 5 ⊢ 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧))) | |
18 | 17 | fmpt 7119 | . . . 4 ⊢ (∀𝑧 ∈ (𝐴 ∪ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧)) ∈ ℂ ↔ 𝐺:(𝐴 ∪ {𝐵})⟶ℂ) |
19 | 16, 18 | sylibr 233 | . . 3 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → ∀𝑧 ∈ (𝐴 ∪ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧)) ∈ ℂ) |
20 | ssun2 4171 | . . . 4 ⊢ {𝐵} ⊆ (𝐴 ∪ {𝐵}) | |
21 | snssg 4789 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵}))) | |
22 | 7, 21 | syl 17 | . . . 4 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵}))) |
23 | 20, 22 | mpbiri 257 | . . 3 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐵 ∈ (𝐴 ∪ {𝐵})) |
24 | 2, 19, 23 | rspcdva 3607 | . 2 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐶 ∈ ℂ) |
25 | 24 | ex 411 | 1 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ∪ cun 3942 ⊆ wss 3944 ifcif 4530 {csn 4630 ↦ cmpt 5232 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ℂcc 11138 ↾t crest 17405 TopOpenctopn 17406 ℂfldccnfld 21296 TopOnctopon 22856 CnP ccnp 23173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9436 df-sup 9467 df-inf 9468 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-q 12966 df-rp 13010 df-xneg 13127 df-xadd 13128 df-xmul 13129 df-fz 13520 df-seq 14003 df-exp 14063 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-struct 17119 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-mulr 17250 df-starv 17251 df-tset 17255 df-ple 17256 df-ds 17258 df-unif 17259 df-rest 17407 df-topn 17408 df-topgen 17428 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-cnfld 21297 df-top 22840 df-topon 22857 df-topsp 22879 df-bases 22893 df-cnp 23176 df-xms 24270 df-ms 24271 |
This theorem is referenced by: limcfval 25845 ellimc 25846 |
Copyright terms: Public domain | W3C validator |