| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limcvallem | Structured version Visualization version GIF version | ||
| Description: Lemma for ellimc 25821. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| limcval.j | ⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) |
| limcval.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| limcvallem.g | ⊢ 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧))) |
| Ref | Expression |
|---|---|
| limcvallem | ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4482 | . . . 4 ⊢ (𝑧 = 𝐵 → if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧)) = 𝐶) | |
| 2 | 1 | eleq1d 2818 | . . 3 ⊢ (𝑧 = 𝐵 → (if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧)) ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
| 3 | limcval.j | . . . . . 6 ⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) | |
| 4 | limcval.k | . . . . . . . 8 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 5 | 4 | cnfldtopon 24717 | . . . . . . 7 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
| 6 | simpl2 1193 | . . . . . . . 8 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐴 ⊆ ℂ) | |
| 7 | simpl3 1194 | . . . . . . . . 9 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐵 ∈ ℂ) | |
| 8 | 7 | snssd 4762 | . . . . . . . 8 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → {𝐵} ⊆ ℂ) |
| 9 | 6, 8 | unssd 4141 | . . . . . . 7 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐴 ∪ {𝐵}) ⊆ ℂ) |
| 10 | resttopon 23096 | . . . . . . 7 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ (𝐴 ∪ {𝐵}) ⊆ ℂ) → (𝐾 ↾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵}))) | |
| 11 | 5, 9, 10 | sylancr 587 | . . . . . 6 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐾 ↾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵}))) |
| 12 | 3, 11 | eqeltrid 2837 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐽 ∈ (TopOn‘(𝐴 ∪ {𝐵}))) |
| 13 | 5 | a1i 11 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐾 ∈ (TopOn‘ℂ)) |
| 14 | simpr 484 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) | |
| 15 | cnpf2 23185 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘(𝐴 ∪ {𝐵})) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐺:(𝐴 ∪ {𝐵})⟶ℂ) | |
| 16 | 12, 13, 14, 15 | syl3anc 1373 | . . . 4 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐺:(𝐴 ∪ {𝐵})⟶ℂ) |
| 17 | limcvallem.g | . . . . 5 ⊢ 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧))) | |
| 18 | 17 | fmpt 7052 | . . . 4 ⊢ (∀𝑧 ∈ (𝐴 ∪ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧)) ∈ ℂ ↔ 𝐺:(𝐴 ∪ {𝐵})⟶ℂ) |
| 19 | 16, 18 | sylibr 234 | . . 3 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → ∀𝑧 ∈ (𝐴 ∪ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧)) ∈ ℂ) |
| 20 | ssun2 4128 | . . . 4 ⊢ {𝐵} ⊆ (𝐴 ∪ {𝐵}) | |
| 21 | snssg 4737 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵}))) | |
| 22 | 7, 21 | syl 17 | . . . 4 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵}))) |
| 23 | 20, 22 | mpbiri 258 | . . 3 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐵 ∈ (𝐴 ∪ {𝐵})) |
| 24 | 2, 19, 23 | rspcdva 3574 | . 2 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)) → 𝐶 ∈ ℂ) |
| 25 | 24 | ex 412 | 1 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∪ cun 3896 ⊆ wss 3898 ifcif 4476 {csn 4577 ↦ cmpt 5176 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ℂcc 11015 ↾t crest 17331 TopOpenctopn 17332 ℂfldccnfld 21300 TopOnctopon 22845 CnP ccnp 23160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9306 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-fz 13415 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-struct 17065 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-mulr 17182 df-starv 17183 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-rest 17333 df-topn 17334 df-topgen 17354 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-cnfld 21301 df-top 22829 df-topon 22846 df-topsp 22868 df-bases 22881 df-cnp 23163 df-xms 24255 df-ms 24256 |
| This theorem is referenced by: limcfval 25820 ellimc 25821 |
| Copyright terms: Public domain | W3C validator |