Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvres3 | Structured version Visualization version GIF version |
Description: Restriction of a complex differentiable function to the reals. (Contributed by Mario Carneiro, 10-Feb-2015.) |
Ref | Expression |
---|---|
dvres3 | ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D 𝐹))) → (𝑆 D (𝐹 ↾ 𝑆)) = ((ℂ D 𝐹) ↾ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldv 25106 | . . 3 ⊢ Rel (𝑆 D (𝐹 ↾ 𝑆)) | |
2 | recnprss 25140 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
3 | 2 | ad2antrr 723 | . . . . 5 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D 𝐹))) → 𝑆 ⊆ ℂ) |
4 | simplr 766 | . . . . . 6 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D 𝐹))) → 𝐹:𝐴⟶ℂ) | |
5 | simprr 770 | . . . . . . 7 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D 𝐹))) → 𝑆 ⊆ dom (ℂ D 𝐹)) | |
6 | ssidd 3954 | . . . . . . . 8 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D 𝐹))) → ℂ ⊆ ℂ) | |
7 | simprl 768 | . . . . . . . 8 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D 𝐹))) → 𝐴 ⊆ ℂ) | |
8 | 6, 4, 7 | dvbss 25137 | . . . . . . 7 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D 𝐹))) → dom (ℂ D 𝐹) ⊆ 𝐴) |
9 | 5, 8 | sstrd 3941 | . . . . . 6 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D 𝐹))) → 𝑆 ⊆ 𝐴) |
10 | 4, 9 | fssresd 6678 | . . . . 5 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D 𝐹))) → (𝐹 ↾ 𝑆):𝑆⟶ℂ) |
11 | ssidd 3954 | . . . . 5 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D 𝐹))) → 𝑆 ⊆ 𝑆) | |
12 | 3, 10, 11 | dvbss 25137 | . . . 4 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D 𝐹))) → dom (𝑆 D (𝐹 ↾ 𝑆)) ⊆ 𝑆) |
13 | ssdmres 5933 | . . . . 5 ⊢ (𝑆 ⊆ dom (ℂ D 𝐹) ↔ dom ((ℂ D 𝐹) ↾ 𝑆) = 𝑆) | |
14 | 5, 13 | sylib 217 | . . . 4 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D 𝐹))) → dom ((ℂ D 𝐹) ↾ 𝑆) = 𝑆) |
15 | 12, 14 | sseqtrrd 3972 | . . 3 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D 𝐹))) → dom (𝑆 D (𝐹 ↾ 𝑆)) ⊆ dom ((ℂ D 𝐹) ↾ 𝑆)) |
16 | relssres 5951 | . . 3 ⊢ ((Rel (𝑆 D (𝐹 ↾ 𝑆)) ∧ dom (𝑆 D (𝐹 ↾ 𝑆)) ⊆ dom ((ℂ D 𝐹) ↾ 𝑆)) → ((𝑆 D (𝐹 ↾ 𝑆)) ↾ dom ((ℂ D 𝐹) ↾ 𝑆)) = (𝑆 D (𝐹 ↾ 𝑆))) | |
17 | 1, 15, 16 | sylancr 587 | . 2 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D 𝐹))) → ((𝑆 D (𝐹 ↾ 𝑆)) ↾ dom ((ℂ D 𝐹) ↾ 𝑆)) = (𝑆 D (𝐹 ↾ 𝑆))) |
18 | dvfg 25142 | . . . . 5 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (𝐹 ↾ 𝑆)):dom (𝑆 D (𝐹 ↾ 𝑆))⟶ℂ) | |
19 | 18 | ad2antrr 723 | . . . 4 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D 𝐹))) → (𝑆 D (𝐹 ↾ 𝑆)):dom (𝑆 D (𝐹 ↾ 𝑆))⟶ℂ) |
20 | 19 | ffund 6641 | . . 3 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D 𝐹))) → Fun (𝑆 D (𝐹 ↾ 𝑆))) |
21 | dvres2 25148 | . . . 4 ⊢ (((ℂ ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ ℂ)) → ((ℂ D 𝐹) ↾ 𝑆) ⊆ (𝑆 D (𝐹 ↾ 𝑆))) | |
22 | 6, 4, 7, 3, 21 | syl22anc 836 | . . 3 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D 𝐹))) → ((ℂ D 𝐹) ↾ 𝑆) ⊆ (𝑆 D (𝐹 ↾ 𝑆))) |
23 | funssres 6514 | . . 3 ⊢ ((Fun (𝑆 D (𝐹 ↾ 𝑆)) ∧ ((ℂ D 𝐹) ↾ 𝑆) ⊆ (𝑆 D (𝐹 ↾ 𝑆))) → ((𝑆 D (𝐹 ↾ 𝑆)) ↾ dom ((ℂ D 𝐹) ↾ 𝑆)) = ((ℂ D 𝐹) ↾ 𝑆)) | |
24 | 20, 22, 23 | syl2anc 584 | . 2 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D 𝐹))) → ((𝑆 D (𝐹 ↾ 𝑆)) ↾ dom ((ℂ D 𝐹) ↾ 𝑆)) = ((ℂ D 𝐹) ↾ 𝑆)) |
25 | 17, 24 | eqtr3d 2779 | 1 ⊢ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D 𝐹))) → (𝑆 D (𝐹 ↾ 𝑆)) = ((ℂ D 𝐹) ↾ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ⊆ wss 3897 {cpr 4573 dom cdm 5607 ↾ cres 5609 Rel wrel 5612 Fun wfun 6459 ⟶wf 6461 (class class class)co 7315 ℂcc 10942 ℝcr 10943 D cdv 25099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-pre-sup 11022 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-er 8546 df-map 8665 df-pm 8666 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-fi 9240 df-sup 9271 df-inf 9272 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-7 12114 df-8 12115 df-9 12116 df-n0 12307 df-z 12393 df-dec 12511 df-uz 12656 df-q 12762 df-rp 12804 df-xneg 12921 df-xadd 12922 df-xmul 12923 df-icc 13159 df-fz 13313 df-seq 13795 df-exp 13856 df-cj 14882 df-re 14883 df-im 14884 df-sqrt 15018 df-abs 15019 df-struct 16918 df-slot 16953 df-ndx 16965 df-base 16983 df-plusg 17045 df-mulr 17046 df-starv 17047 df-tset 17051 df-ple 17052 df-ds 17054 df-unif 17055 df-rest 17203 df-topn 17204 df-topgen 17224 df-psmet 20661 df-xmet 20662 df-met 20663 df-bl 20664 df-mopn 20665 df-fbas 20666 df-fg 20667 df-cnfld 20670 df-top 22115 df-topon 22132 df-topsp 22154 df-bases 22168 df-cld 22242 df-ntr 22243 df-cls 22244 df-nei 22321 df-lp 22359 df-perf 22360 df-cnp 22451 df-haus 22538 df-fil 23069 df-fm 23161 df-flim 23162 df-flf 23163 df-xms 23545 df-ms 23546 df-limc 25102 df-dv 25103 |
This theorem is referenced by: dvmptresicc 25152 dvcmul 25180 dvcmulf 25181 itgpowd 25286 efcvx 25680 dvrelog 25864 lhe4.4ex1a 42168 dvsconst 42169 dvsid 42170 dvsef 42171 dvcosre 43690 dvcnre 43694 itgsinexplem1 43732 itgcoscmulx 43747 dirkercncflem2 43882 fourierdlem57 43941 fourierdlem58 43942 |
Copyright terms: Public domain | W3C validator |