Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimxrre Structured version   Visualization version   GIF version

Theorem xlimxrre 44192
Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis 𝐹 ∈ dom ⇝ is probably not enough, since in principle we could have +∞ ∈ ℂ and -∞ ∈ ℂ). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimxrre.m (𝜑𝑀 ∈ ℤ)
xlimxrre.z 𝑍 = (ℤ𝑀)
xlimxrre.f (𝜑𝐹:𝑍⟶ℝ*)
xlimxrre.a (𝜑𝐴 ∈ ℝ)
xlimxrre.c (𝜑𝐹~~>*𝐴)
Assertion
Ref Expression
xlimxrre (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹   𝑗,𝑀   𝑗,𝑍   𝜑,𝑗

Proof of Theorem xlimxrre
Dummy variables 𝑘 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elioore 13304 . . . . . . 7 ((𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → (𝐹𝑘) ∈ ℝ)
21anim2i 617 . . . . . 6 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
32ralimi 3082 . . . . 5 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
43adantl 482 . . . 4 ((𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
5 xlimxrre.f . . . . . . 7 (𝜑𝐹:𝑍⟶ℝ*)
65ffund 6677 . . . . . 6 (𝜑 → Fun 𝐹)
7 ffvresb 7077 . . . . . 6 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
86, 7syl 17 . . . . 5 (𝜑 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
98adantr 481 . . . 4 ((𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
104, 9mpbird 256 . . 3 ((𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
1110adantrl 714 . 2 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
12 xlimxrre.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
13 peano2rem 11477 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
1412, 13syl 17 . . . . 5 (𝜑 → (𝐴 − 1) ∈ ℝ)
1514rexrd 11214 . . . 4 (𝜑 → (𝐴 − 1) ∈ ℝ*)
16 peano2re 11337 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
1712, 16syl 17 . . . . 5 (𝜑 → (𝐴 + 1) ∈ ℝ)
1817rexrd 11214 . . . 4 (𝜑 → (𝐴 + 1) ∈ ℝ*)
1912ltm1d 12096 . . . 4 (𝜑 → (𝐴 − 1) < 𝐴)
2012ltp1d 12094 . . . 4 (𝜑𝐴 < (𝐴 + 1))
2115, 18, 12, 19, 20eliood 43856 . . 3 (𝜑𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)))
22 iooordt 22605 . . . 4 ((𝐴 − 1)(,)(𝐴 + 1)) ∈ (ordTop‘ ≤ )
23 xlimxrre.c . . . . . 6 (𝜑𝐹~~>*𝐴)
24 nfcv 2902 . . . . . . 7 𝑘𝐹
25 xlimxrre.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
26 xlimxrre.z . . . . . . 7 𝑍 = (ℤ𝑀)
27 eqid 2731 . . . . . . 7 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
2824, 25, 26, 5, 27xlimbr 44188 . . . . . 6 (𝜑 → (𝐹~~>*𝐴 ↔ (𝐴 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
2923, 28mpbid 231 . . . . 5 (𝜑 → (𝐴 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
3029simprd 496 . . . 4 (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
31 eleq2 2821 . . . . . 6 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → (𝐴𝑢𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1))))
32 eleq2 2821 . . . . . . . 8 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))
3332anbi2d 629 . . . . . . 7 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))
3433rexralbidv 3210 . . . . . 6 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))
3531, 34imbi12d 344 . . . . 5 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))))
3635rspcva 3580 . . . 4 ((((𝐴 − 1)(,)(𝐴 + 1)) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))
3722, 30, 36sylancr 587 . . 3 (𝜑 → (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))
3821, 37mpd 15 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))
3911, 38reximddv 3164 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3060  wrex 3069   class class class wbr 5110  dom cdm 5638  cres 5640  Fun wfun 6495  wf 6497  cfv 6501  (class class class)co 7362  cr 11059  1c1 11061   + caddc 11063  *cxr 11197  cle 11199  cmin 11394  cz 12508  cuz 12772  (,)cioo 13274  ordTopcordt 17395  ~~>*clsxlim 44179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fi 9356  df-sup 9387  df-inf 9388  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-n0 12423  df-z 12509  df-uz 12773  df-q 12883  df-ioo 13278  df-ioc 13279  df-ico 13280  df-icc 13281  df-topgen 17339  df-ordt 17397  df-ps 18469  df-tsr 18470  df-top 22280  df-topon 22297  df-bases 22333  df-lm 22617  df-xlim 44180
This theorem is referenced by:  xlimclim2  44201  xlimliminflimsup  44223
  Copyright terms: Public domain W3C validator