![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimxrre | Structured version Visualization version GIF version |
Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis 𝐹 ∈ dom ⇝ is probably not enough, since in principle we could have +∞ ∈ ℂ and -∞ ∈ ℂ). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xlimxrre.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
xlimxrre.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
xlimxrre.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
xlimxrre.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
xlimxrre.c | ⊢ (𝜑 → 𝐹~~>*𝐴) |
Ref | Expression |
---|---|
xlimxrre | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioore 13437 | . . . . . . 7 ⊢ ((𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → (𝐹‘𝑘) ∈ ℝ) | |
2 | 1 | anim2i 616 | . . . . . 6 ⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))) → (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ)) |
3 | 2 | ralimi 3089 | . . . . 5 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ)) |
4 | 3 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ)) |
5 | xlimxrre.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
6 | 5 | ffund 6751 | . . . . . 6 ⊢ (𝜑 → Fun 𝐹) |
7 | ffvresb 7159 | . . . . . 6 ⊢ (Fun 𝐹 → ((𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → ((𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) |
10 | 4, 9 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
11 | 10 | adantrl 715 | . 2 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
12 | xlimxrre.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
13 | peano2rem 11603 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 − 1) ∈ ℝ) |
15 | 14 | rexrd 11340 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) ∈ ℝ*) |
16 | peano2re 11463 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
17 | 12, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ) |
18 | 17 | rexrd 11340 | . . . 4 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ*) |
19 | 12 | ltm1d 12227 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) < 𝐴) |
20 | 12 | ltp1d 12225 | . . . 4 ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
21 | 15, 18, 12, 19, 20 | eliood 45416 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1))) |
22 | iooordt 23246 | . . . 4 ⊢ ((𝐴 − 1)(,)(𝐴 + 1)) ∈ (ordTop‘ ≤ ) | |
23 | xlimxrre.c | . . . . . 6 ⊢ (𝜑 → 𝐹~~>*𝐴) | |
24 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑘𝐹 | |
25 | xlimxrre.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
26 | xlimxrre.z | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
27 | eqid 2740 | . . . . . . 7 ⊢ (ordTop‘ ≤ ) = (ordTop‘ ≤ ) | |
28 | 24, 25, 26, 5, 27 | xlimbr 45748 | . . . . . 6 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐴 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
29 | 23, 28 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
30 | 29 | simprd 495 | . . . 4 ⊢ (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
31 | eleq2 2833 | . . . . . 6 ⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → (𝐴 ∈ 𝑢 ↔ 𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) | |
32 | eleq2 2833 | . . . . . . . 8 ⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝐹‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) | |
33 | 32 | anbi2d 629 | . . . . . . 7 ⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) |
34 | 33 | rexralbidv 3229 | . . . . . 6 ⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) |
35 | 31, 34 | imbi12d 344 | . . . . 5 ⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) ↔ (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))) |
36 | 35 | rspcva 3633 | . . . 4 ⊢ ((((𝐴 − 1)(,)(𝐴 + 1)) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) → (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) |
37 | 22, 30, 36 | sylancr 586 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) |
38 | 21, 37 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) |
39 | 11, 38 | reximddv 3177 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 class class class wbr 5166 dom cdm 5700 ↾ cres 5702 Fun wfun 6567 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 1c1 11185 + caddc 11187 ℝ*cxr 11323 ≤ cle 11325 − cmin 11520 ℤcz 12639 ℤ≥cuz 12903 (,)cioo 13407 ordTopcordt 17559 ~~>*clsxlim 45739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fi 9480 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-topgen 17503 df-ordt 17561 df-ps 18636 df-tsr 18637 df-top 22921 df-topon 22938 df-bases 22974 df-lm 23258 df-xlim 45740 |
This theorem is referenced by: xlimclim2 45761 xlimliminflimsup 45783 |
Copyright terms: Public domain | W3C validator |