![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimxrre | Structured version Visualization version GIF version |
Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis 𝐹 ∈ dom ⇝ is probably not enough, since in principle we could have +∞ ∈ ℂ and -∞ ∈ ℂ). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xlimxrre.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
xlimxrre.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
xlimxrre.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
xlimxrre.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
xlimxrre.c | ⊢ (𝜑 → 𝐹~~>*𝐴) |
Ref | Expression |
---|---|
xlimxrre | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioore 13414 | . . . . . . 7 ⊢ ((𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → (𝐹‘𝑘) ∈ ℝ) | |
2 | 1 | anim2i 617 | . . . . . 6 ⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))) → (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ)) |
3 | 2 | ralimi 3081 | . . . . 5 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ)) |
4 | 3 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ)) |
5 | xlimxrre.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
6 | 5 | ffund 6741 | . . . . . 6 ⊢ (𝜑 → Fun 𝐹) |
7 | ffvresb 7145 | . . . . . 6 ⊢ (Fun 𝐹 → ((𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → ((𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) |
10 | 4, 9 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
11 | 10 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
12 | xlimxrre.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
13 | peano2rem 11574 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 − 1) ∈ ℝ) |
15 | 14 | rexrd 11309 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) ∈ ℝ*) |
16 | peano2re 11432 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
17 | 12, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ) |
18 | 17 | rexrd 11309 | . . . 4 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ*) |
19 | 12 | ltm1d 12198 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) < 𝐴) |
20 | 12 | ltp1d 12196 | . . . 4 ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
21 | 15, 18, 12, 19, 20 | eliood 45451 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1))) |
22 | iooordt 23241 | . . . 4 ⊢ ((𝐴 − 1)(,)(𝐴 + 1)) ∈ (ordTop‘ ≤ ) | |
23 | xlimxrre.c | . . . . . 6 ⊢ (𝜑 → 𝐹~~>*𝐴) | |
24 | nfcv 2903 | . . . . . . 7 ⊢ Ⅎ𝑘𝐹 | |
25 | xlimxrre.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
26 | xlimxrre.z | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
27 | eqid 2735 | . . . . . . 7 ⊢ (ordTop‘ ≤ ) = (ordTop‘ ≤ ) | |
28 | 24, 25, 26, 5, 27 | xlimbr 45783 | . . . . . 6 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐴 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
29 | 23, 28 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
30 | 29 | simprd 495 | . . . 4 ⊢ (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
31 | eleq2 2828 | . . . . . 6 ⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → (𝐴 ∈ 𝑢 ↔ 𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) | |
32 | eleq2 2828 | . . . . . . . 8 ⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝐹‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) | |
33 | 32 | anbi2d 630 | . . . . . . 7 ⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) |
34 | 33 | rexralbidv 3221 | . . . . . 6 ⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) |
35 | 31, 34 | imbi12d 344 | . . . . 5 ⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) ↔ (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))) |
36 | 35 | rspcva 3620 | . . . 4 ⊢ ((((𝐴 − 1)(,)(𝐴 + 1)) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) → (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) |
37 | 22, 30, 36 | sylancr 587 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) |
38 | 21, 37 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) |
39 | 11, 38 | reximddv 3169 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 class class class wbr 5148 dom cdm 5689 ↾ cres 5691 Fun wfun 6557 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 1c1 11154 + caddc 11156 ℝ*cxr 11292 ≤ cle 11294 − cmin 11490 ℤcz 12611 ℤ≥cuz 12876 (,)cioo 13384 ordTopcordt 17546 ~~>*clsxlim 45774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-topgen 17490 df-ordt 17548 df-ps 18624 df-tsr 18625 df-top 22916 df-topon 22933 df-bases 22969 df-lm 23253 df-xlim 45775 |
This theorem is referenced by: xlimclim2 45796 xlimliminflimsup 45818 |
Copyright terms: Public domain | W3C validator |