Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimxrre Structured version   Visualization version   GIF version

Theorem xlimxrre 45357
Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis 𝐹 ∈ dom ⇝ is probably not enough, since in principle we could have +∞ ∈ ℂ and -∞ ∈ ℂ). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimxrre.m (𝜑𝑀 ∈ ℤ)
xlimxrre.z 𝑍 = (ℤ𝑀)
xlimxrre.f (𝜑𝐹:𝑍⟶ℝ*)
xlimxrre.a (𝜑𝐴 ∈ ℝ)
xlimxrre.c (𝜑𝐹~~>*𝐴)
Assertion
Ref Expression
xlimxrre (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹   𝑗,𝑀   𝑗,𝑍   𝜑,𝑗

Proof of Theorem xlimxrre
Dummy variables 𝑘 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elioore 13389 . . . . . . 7 ((𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → (𝐹𝑘) ∈ ℝ)
21anim2i 615 . . . . . 6 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
32ralimi 3072 . . . . 5 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
43adantl 480 . . . 4 ((𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
5 xlimxrre.f . . . . . . 7 (𝜑𝐹:𝑍⟶ℝ*)
65ffund 6727 . . . . . 6 (𝜑 → Fun 𝐹)
7 ffvresb 7134 . . . . . 6 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
86, 7syl 17 . . . . 5 (𝜑 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
98adantr 479 . . . 4 ((𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
104, 9mpbird 256 . . 3 ((𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
1110adantrl 714 . 2 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
12 xlimxrre.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
13 peano2rem 11559 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
1412, 13syl 17 . . . . 5 (𝜑 → (𝐴 − 1) ∈ ℝ)
1514rexrd 11296 . . . 4 (𝜑 → (𝐴 − 1) ∈ ℝ*)
16 peano2re 11419 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
1712, 16syl 17 . . . . 5 (𝜑 → (𝐴 + 1) ∈ ℝ)
1817rexrd 11296 . . . 4 (𝜑 → (𝐴 + 1) ∈ ℝ*)
1912ltm1d 12179 . . . 4 (𝜑 → (𝐴 − 1) < 𝐴)
2012ltp1d 12177 . . . 4 (𝜑𝐴 < (𝐴 + 1))
2115, 18, 12, 19, 20eliood 45021 . . 3 (𝜑𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)))
22 iooordt 23165 . . . 4 ((𝐴 − 1)(,)(𝐴 + 1)) ∈ (ordTop‘ ≤ )
23 xlimxrre.c . . . . . 6 (𝜑𝐹~~>*𝐴)
24 nfcv 2891 . . . . . . 7 𝑘𝐹
25 xlimxrre.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
26 xlimxrre.z . . . . . . 7 𝑍 = (ℤ𝑀)
27 eqid 2725 . . . . . . 7 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
2824, 25, 26, 5, 27xlimbr 45353 . . . . . 6 (𝜑 → (𝐹~~>*𝐴 ↔ (𝐴 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
2923, 28mpbid 231 . . . . 5 (𝜑 → (𝐴 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
3029simprd 494 . . . 4 (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
31 eleq2 2814 . . . . . 6 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → (𝐴𝑢𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1))))
32 eleq2 2814 . . . . . . . 8 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))
3332anbi2d 628 . . . . . . 7 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))
3433rexralbidv 3210 . . . . . 6 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))
3531, 34imbi12d 343 . . . . 5 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))))
3635rspcva 3604 . . . 4 ((((𝐴 − 1)(,)(𝐴 + 1)) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))
3722, 30, 36sylancr 585 . . 3 (𝜑 → (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))
3821, 37mpd 15 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))
3911, 38reximddv 3160 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3050  wrex 3059   class class class wbr 5149  dom cdm 5678  cres 5680  Fun wfun 6543  wf 6545  cfv 6549  (class class class)co 7419  cr 11139  1c1 11141   + caddc 11143  *cxr 11279  cle 11281  cmin 11476  cz 12591  cuz 12855  (,)cioo 13359  ordTopcordt 17484  ~~>*clsxlim 45344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9436  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-q 12966  df-ioo 13363  df-ioc 13364  df-ico 13365  df-icc 13366  df-topgen 17428  df-ordt 17486  df-ps 18561  df-tsr 18562  df-top 22840  df-topon 22857  df-bases 22893  df-lm 23177  df-xlim 45345
This theorem is referenced by:  xlimclim2  45366  xlimliminflimsup  45388
  Copyright terms: Public domain W3C validator