| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimxrre | Structured version Visualization version GIF version | ||
| Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis 𝐹 ∈ dom ⇝ is probably not enough, since in principle we could have +∞ ∈ ℂ and -∞ ∈ ℂ). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| xlimxrre.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| xlimxrre.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| xlimxrre.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| xlimxrre.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| xlimxrre.c | ⊢ (𝜑 → 𝐹~~>*𝐴) |
| Ref | Expression |
|---|---|
| xlimxrre | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore 13312 | . . . . . . 7 ⊢ ((𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → (𝐹‘𝑘) ∈ ℝ) | |
| 2 | 1 | anim2i 617 | . . . . . 6 ⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))) → (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ)) |
| 3 | 2 | ralimi 3066 | . . . . 5 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ)) |
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ)) |
| 5 | xlimxrre.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
| 6 | 5 | ffund 6674 | . . . . . 6 ⊢ (𝜑 → Fun 𝐹) |
| 7 | ffvresb 7079 | . . . . . 6 ⊢ (Fun 𝐹 → ((𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → ((𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) |
| 10 | 4, 9 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
| 11 | 10 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
| 12 | xlimxrre.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 13 | peano2rem 11465 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 − 1) ∈ ℝ) |
| 15 | 14 | rexrd 11200 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) ∈ ℝ*) |
| 16 | peano2re 11323 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
| 17 | 12, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ) |
| 18 | 17 | rexrd 11200 | . . . 4 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ*) |
| 19 | 12 | ltm1d 12091 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) < 𝐴) |
| 20 | 12 | ltp1d 12089 | . . . 4 ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
| 21 | 15, 18, 12, 19, 20 | eliood 45469 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1))) |
| 22 | iooordt 23080 | . . . 4 ⊢ ((𝐴 − 1)(,)(𝐴 + 1)) ∈ (ordTop‘ ≤ ) | |
| 23 | xlimxrre.c | . . . . . 6 ⊢ (𝜑 → 𝐹~~>*𝐴) | |
| 24 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑘𝐹 | |
| 25 | xlimxrre.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 26 | xlimxrre.z | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 27 | eqid 2729 | . . . . . . 7 ⊢ (ordTop‘ ≤ ) = (ordTop‘ ≤ ) | |
| 28 | 24, 25, 26, 5, 27 | xlimbr 45798 | . . . . . 6 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐴 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
| 29 | 23, 28 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
| 30 | 29 | simprd 495 | . . . 4 ⊢ (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
| 31 | eleq2 2817 | . . . . . 6 ⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → (𝐴 ∈ 𝑢 ↔ 𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) | |
| 32 | eleq2 2817 | . . . . . . . 8 ⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝐹‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) | |
| 33 | 32 | anbi2d 630 | . . . . . . 7 ⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) |
| 34 | 33 | rexralbidv 3201 | . . . . . 6 ⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) |
| 35 | 31, 34 | imbi12d 344 | . . . . 5 ⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) ↔ (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))) |
| 36 | 35 | rspcva 3583 | . . . 4 ⊢ ((((𝐴 − 1)(,)(𝐴 + 1)) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) → (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) |
| 37 | 22, 30, 36 | sylancr 587 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) |
| 38 | 21, 37 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) |
| 39 | 11, 38 | reximddv 3149 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5102 dom cdm 5631 ↾ cres 5633 Fun wfun 6493 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 1c1 11045 + caddc 11047 ℝ*cxr 11183 ≤ cle 11185 − cmin 11381 ℤcz 12505 ℤ≥cuz 12769 (,)cioo 13282 ordTopcordt 17438 ~~>*clsxlim 45789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fi 9338 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-ioo 13286 df-ioc 13287 df-ico 13288 df-icc 13289 df-topgen 17382 df-ordt 17440 df-ps 18501 df-tsr 18502 df-top 22757 df-topon 22774 df-bases 22809 df-lm 23092 df-xlim 45790 |
| This theorem is referenced by: xlimclim2 45811 xlimliminflimsup 45833 |
| Copyright terms: Public domain | W3C validator |