Step | Hyp | Ref
| Expression |
1 | | elioore 13109 |
. . . . . . 7
⊢ ((𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → (𝐹‘𝑘) ∈ ℝ) |
2 | 1 | anim2i 617 |
. . . . . 6
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))) → (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ)) |
3 | 2 | ralimi 3087 |
. . . . 5
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ)) |
4 | 3 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ)) |
5 | | xlimxrre.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
6 | 5 | ffund 6604 |
. . . . . 6
⊢ (𝜑 → Fun 𝐹) |
7 | | ffvresb 6998 |
. . . . . 6
⊢ (Fun
𝐹 → ((𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔
∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) |
8 | 6, 7 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔
∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) |
9 | 8 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → ((𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔
∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) |
10 | 4, 9 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
11 | 10 | adantrl 713 |
. 2
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
12 | | xlimxrre.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
13 | | peano2rem 11288 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ∈
ℝ) |
14 | 12, 13 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐴 − 1) ∈ ℝ) |
15 | 14 | rexrd 11025 |
. . . 4
⊢ (𝜑 → (𝐴 − 1) ∈
ℝ*) |
16 | | peano2re 11148 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈
ℝ) |
17 | 12, 16 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐴 + 1) ∈ ℝ) |
18 | 17 | rexrd 11025 |
. . . 4
⊢ (𝜑 → (𝐴 + 1) ∈
ℝ*) |
19 | 12 | ltm1d 11907 |
. . . 4
⊢ (𝜑 → (𝐴 − 1) < 𝐴) |
20 | 12 | ltp1d 11905 |
. . . 4
⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
21 | 15, 18, 12, 19, 20 | eliood 43036 |
. . 3
⊢ (𝜑 → 𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1))) |
22 | | iooordt 22368 |
. . . 4
⊢ ((𝐴 − 1)(,)(𝐴 + 1)) ∈ (ordTop‘ ≤
) |
23 | | xlimxrre.c |
. . . . . 6
⊢ (𝜑 → 𝐹~~>*𝐴) |
24 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑘𝐹 |
25 | | xlimxrre.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
26 | | xlimxrre.z |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
27 | | eqid 2738 |
. . . . . . 7
⊢
(ordTop‘ ≤ ) = (ordTop‘ ≤ ) |
28 | 24, 25, 26, 5, 27 | xlimbr 43368 |
. . . . . 6
⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐴 ∈ ℝ* ∧
∀𝑢 ∈
(ordTop‘ ≤ )(𝐴
∈ 𝑢 →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
29 | 23, 28 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝐴 ∈ ℝ* ∧
∀𝑢 ∈
(ordTop‘ ≤ )(𝐴
∈ 𝑢 →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
30 | 29 | simprd 496 |
. . . 4
⊢ (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
31 | | eleq2 2827 |
. . . . . 6
⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → (𝐴 ∈ 𝑢 ↔ 𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) |
32 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝐹‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) |
33 | 32 | anbi2d 629 |
. . . . . . 7
⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) |
34 | 33 | rexralbidv 3230 |
. . . . . 6
⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) |
35 | 31, 34 | imbi12d 345 |
. . . . 5
⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) ↔ (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))) |
36 | 35 | rspcva 3559 |
. . . 4
⊢ ((((𝐴 − 1)(,)(𝐴 + 1)) ∈ (ordTop‘ ≤ ) ∧
∀𝑢 ∈
(ordTop‘ ≤ )(𝐴
∈ 𝑢 →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) → (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) |
37 | 22, 30, 36 | sylancr 587 |
. . 3
⊢ (𝜑 → (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) |
38 | 21, 37 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) |
39 | 11, 38 | reximddv 3204 |
1
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |