Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimxrre | Structured version Visualization version GIF version |
Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis 𝐹 ∈ dom ⇝ is probably not enough, since in principle we could have +∞ ∈ ℂ and -∞ ∈ ℂ). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xlimxrre.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
xlimxrre.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
xlimxrre.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
xlimxrre.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
xlimxrre.c | ⊢ (𝜑 → 𝐹~~>*𝐴) |
Ref | Expression |
---|---|
xlimxrre | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioore 13038 | . . . . . . 7 ⊢ ((𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → (𝐹‘𝑘) ∈ ℝ) | |
2 | 1 | anim2i 616 | . . . . . 6 ⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))) → (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ)) |
3 | 2 | ralimi 3086 | . . . . 5 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ)) |
4 | 3 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ)) |
5 | xlimxrre.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
6 | 5 | ffund 6588 | . . . . . 6 ⊢ (𝜑 → Fun 𝐹) |
7 | ffvresb 6980 | . . . . . 6 ⊢ (Fun 𝐹 → ((𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → ((𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) |
10 | 4, 9 | mpbird 256 | . . 3 ⊢ ((𝜑 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
11 | 10 | adantrl 712 | . 2 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
12 | xlimxrre.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
13 | peano2rem 11218 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 − 1) ∈ ℝ) |
15 | 14 | rexrd 10956 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) ∈ ℝ*) |
16 | peano2re 11078 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
17 | 12, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ) |
18 | 17 | rexrd 10956 | . . . 4 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ*) |
19 | 12 | ltm1d 11837 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) < 𝐴) |
20 | 12 | ltp1d 11835 | . . . 4 ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
21 | 15, 18, 12, 19, 20 | eliood 42926 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1))) |
22 | iooordt 22276 | . . . 4 ⊢ ((𝐴 − 1)(,)(𝐴 + 1)) ∈ (ordTop‘ ≤ ) | |
23 | xlimxrre.c | . . . . . 6 ⊢ (𝜑 → 𝐹~~>*𝐴) | |
24 | nfcv 2906 | . . . . . . 7 ⊢ Ⅎ𝑘𝐹 | |
25 | xlimxrre.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
26 | xlimxrre.z | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
27 | eqid 2738 | . . . . . . 7 ⊢ (ordTop‘ ≤ ) = (ordTop‘ ≤ ) | |
28 | 24, 25, 26, 5, 27 | xlimbr 43258 | . . . . . 6 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐴 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
29 | 23, 28 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
30 | 29 | simprd 495 | . . . 4 ⊢ (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
31 | eleq2 2827 | . . . . . 6 ⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → (𝐴 ∈ 𝑢 ↔ 𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) | |
32 | eleq2 2827 | . . . . . . . 8 ⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝐹‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) | |
33 | 32 | anbi2d 628 | . . . . . . 7 ⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) |
34 | 33 | rexralbidv 3229 | . . . . . 6 ⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) |
35 | 31, 34 | imbi12d 344 | . . . . 5 ⊢ (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) ↔ (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))) |
36 | 35 | rspcva 3550 | . . . 4 ⊢ ((((𝐴 − 1)(,)(𝐴 + 1)) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) → (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) |
37 | 22, 30, 36 | sylancr 586 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) |
38 | 21, 37 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) |
39 | 11, 38 | reximddv 3203 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 class class class wbr 5070 dom cdm 5580 ↾ cres 5582 Fun wfun 6412 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 1c1 10803 + caddc 10805 ℝ*cxr 10939 ≤ cle 10941 − cmin 11135 ℤcz 12249 ℤ≥cuz 12511 (,)cioo 13008 ordTopcordt 17127 ~~>*clsxlim 43249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-topgen 17071 df-ordt 17129 df-ps 18199 df-tsr 18200 df-top 21951 df-topon 21968 df-bases 22004 df-lm 22288 df-xlim 43250 |
This theorem is referenced by: xlimclim2 43271 xlimliminflimsup 43293 |
Copyright terms: Public domain | W3C validator |