Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimxrre Structured version   Visualization version   GIF version

Theorem xlimxrre 40575
Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis 𝐹 ∈ dom ⇝ is probably not enough, since in principle we could have +∞ ∈ ℂ and -∞ ∈ ℂ). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimxrre.m (𝜑𝑀 ∈ ℤ)
xlimxrre.z 𝑍 = (ℤ𝑀)
xlimxrre.f (𝜑𝐹:𝑍⟶ℝ*)
xlimxrre.a (𝜑𝐴 ∈ ℝ)
xlimxrre.c (𝜑𝐹~~>*𝐴)
Assertion
Ref Expression
xlimxrre (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹   𝑗,𝑀   𝑗,𝑍   𝜑,𝑗

Proof of Theorem xlimxrre
Dummy variables 𝑘 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elioore 12410 . . . . . . 7 ((𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → (𝐹𝑘) ∈ ℝ)
21anim2i 603 . . . . . 6 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
32ralimi 3101 . . . . 5 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
43adantl 467 . . . 4 ((𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
5 xlimxrre.f . . . . . . 7 (𝜑𝐹:𝑍⟶ℝ*)
65ffund 6189 . . . . . 6 (𝜑 → Fun 𝐹)
7 ffvresb 6536 . . . . . 6 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
86, 7syl 17 . . . . 5 (𝜑 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
98adantr 466 . . . 4 ((𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
104, 9mpbird 247 . . 3 ((𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
1110adantrl 695 . 2 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
12 xlimxrre.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
13 peano2rem 10550 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
1412, 13syl 17 . . . . 5 (𝜑 → (𝐴 − 1) ∈ ℝ)
1514rexrd 10291 . . . 4 (𝜑 → (𝐴 − 1) ∈ ℝ*)
16 peano2re 10411 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
1712, 16syl 17 . . . . 5 (𝜑 → (𝐴 + 1) ∈ ℝ)
1817rexrd 10291 . . . 4 (𝜑 → (𝐴 + 1) ∈ ℝ*)
1912ltm1d 11158 . . . 4 (𝜑 → (𝐴 − 1) < 𝐴)
2012ltp1d 11156 . . . 4 (𝜑𝐴 < (𝐴 + 1))
2115, 18, 12, 19, 20eliood 40241 . . 3 (𝜑𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)))
22 iooordt 21242 . . . 4 ((𝐴 − 1)(,)(𝐴 + 1)) ∈ (ordTop‘ ≤ )
23 xlimxrre.c . . . . . 6 (𝜑𝐹~~>*𝐴)
24 nfcv 2913 . . . . . . 7 𝑘𝐹
25 xlimxrre.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
26 xlimxrre.z . . . . . . 7 𝑍 = (ℤ𝑀)
27 eqid 2771 . . . . . . 7 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
2824, 25, 26, 5, 27xlimbr 40571 . . . . . 6 (𝜑 → (𝐹~~>*𝐴 ↔ (𝐴 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
2923, 28mpbid 222 . . . . 5 (𝜑 → (𝐴 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
3029simprd 483 . . . 4 (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
31 eleq2 2839 . . . . . 6 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → (𝐴𝑢𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1))))
32 eleq2 2839 . . . . . . . 8 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))
3332anbi2d 614 . . . . . . 7 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))
3433rexralbidv 3206 . . . . . 6 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))
3531, 34imbi12d 333 . . . . 5 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))))
3635rspcva 3458 . . . 4 ((((𝐴 − 1)(,)(𝐴 + 1)) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))
3722, 30, 36sylancr 575 . . 3 (𝜑 → (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))
3821, 37mpd 15 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))
3911, 38reximddv 3166 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062   class class class wbr 4786  dom cdm 5249  cres 5251  Fun wfun 6025  wf 6027  cfv 6031  (class class class)co 6793  cr 10137  1c1 10139   + caddc 10141  *cxr 10275  cle 10277  cmin 10468  cz 11579  cuz 11888  (,)cioo 12380  ordTopcordt 16367  ~~>*clsxlim 40562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fi 8473  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-q 11992  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-topgen 16312  df-ordt 16369  df-ps 17408  df-tsr 17409  df-top 20919  df-topon 20936  df-bases 20971  df-lm 21254  df-xlim 40563
This theorem is referenced by:  xlimclim2  40584
  Copyright terms: Public domain W3C validator