![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mideulem | Structured version Visualization version GIF version |
Description: Lemma for mideu 28766. We can assume mideulem.9 "without loss of generality". (Contributed by Thierry Arnoux, 25-Nov-2019.) |
Ref | Expression |
---|---|
colperpex.p | ⊢ 𝑃 = (Base‘𝐺) |
colperpex.d | ⊢ − = (dist‘𝐺) |
colperpex.i | ⊢ 𝐼 = (Itv‘𝐺) |
colperpex.l | ⊢ 𝐿 = (LineG‘𝐺) |
colperpex.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mideu.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mideu.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mideu.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
mideulem.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
mideulem.2 | ⊢ (𝜑 → 𝑄 ∈ 𝑃) |
mideulem.3 | ⊢ (𝜑 → 𝑂 ∈ 𝑃) |
mideulem.4 | ⊢ (𝜑 → 𝑇 ∈ 𝑃) |
mideulem.5 | ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵)) |
mideulem.6 | ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂)) |
mideulem.7 | ⊢ (𝜑 → 𝑇 ∈ (𝐴𝐿𝐵)) |
mideulem.8 | ⊢ (𝜑 → 𝑇 ∈ (𝑄𝐼𝑂)) |
mideulem.9 | ⊢ (𝜑 → (𝐴 − 𝑂)(≤G‘𝐺)(𝐵 − 𝑄)) |
Ref | Expression |
---|---|
mideulem | ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprrl 780 | . . 3 ⊢ ((((𝜑 ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 − 𝑂) = (𝐵 − 𝑟))) ∧ (𝑥 ∈ 𝑃 ∧ (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝑂 = ((𝑆‘𝑥)‘𝑟)))) → 𝐵 = ((𝑆‘𝑥)‘𝐴)) | |
2 | colperpex.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
3 | colperpex.d | . . . 4 ⊢ − = (dist‘𝐺) | |
4 | colperpex.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | colperpex.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
6 | colperpex.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | 6 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 − 𝑂) = (𝐵 − 𝑟))) → 𝐺 ∈ TarskiG) |
8 | mideu.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
9 | mideu.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
10 | 9 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 − 𝑂) = (𝐵 − 𝑟))) → 𝐴 ∈ 𝑃) |
11 | mideu.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
12 | 11 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 − 𝑂) = (𝐵 − 𝑟))) → 𝐵 ∈ 𝑃) |
13 | mideulem.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
14 | 13 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 − 𝑂) = (𝐵 − 𝑟))) → 𝐴 ≠ 𝐵) |
15 | mideulem.2 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝑃) | |
16 | 15 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 − 𝑂) = (𝐵 − 𝑟))) → 𝑄 ∈ 𝑃) |
17 | mideulem.3 | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ 𝑃) | |
18 | 17 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 − 𝑂) = (𝐵 − 𝑟))) → 𝑂 ∈ 𝑃) |
19 | mideulem.4 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝑃) | |
20 | 19 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 − 𝑂) = (𝐵 − 𝑟))) → 𝑇 ∈ 𝑃) |
21 | mideulem.5 | . . . . 5 ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵)) | |
22 | 21 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 − 𝑂) = (𝐵 − 𝑟))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵)) |
23 | mideulem.6 | . . . . 5 ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂)) | |
24 | 23 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 − 𝑂) = (𝐵 − 𝑟))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂)) |
25 | mideulem.7 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (𝐴𝐿𝐵)) | |
26 | 25 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 − 𝑂) = (𝐵 − 𝑟))) → 𝑇 ∈ (𝐴𝐿𝐵)) |
27 | mideulem.8 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (𝑄𝐼𝑂)) | |
28 | 27 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 − 𝑂) = (𝐵 − 𝑟))) → 𝑇 ∈ (𝑄𝐼𝑂)) |
29 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 − 𝑂) = (𝐵 − 𝑟))) → 𝑟 ∈ 𝑃) | |
30 | simprl 770 | . . . 4 ⊢ (((𝜑 ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 − 𝑂) = (𝐵 − 𝑟))) → 𝑟 ∈ (𝐵𝐼𝑄)) | |
31 | simprr 772 | . . . 4 ⊢ (((𝜑 ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 − 𝑂) = (𝐵 − 𝑟))) → (𝐴 − 𝑂) = (𝐵 − 𝑟)) | |
32 | 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 29, 30, 31 | opphllem 28763 | . . 3 ⊢ (((𝜑 ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 − 𝑂) = (𝐵 − 𝑟))) → ∃𝑥 ∈ 𝑃 (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝑂 = ((𝑆‘𝑥)‘𝑟))) |
33 | 1, 32 | reximddv 3177 | . 2 ⊢ (((𝜑 ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 − 𝑂) = (𝐵 − 𝑟))) → ∃𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) |
34 | mideulem.9 | . . 3 ⊢ (𝜑 → (𝐴 − 𝑂)(≤G‘𝐺)(𝐵 − 𝑄)) | |
35 | eqid 2740 | . . . 4 ⊢ (≤G‘𝐺) = (≤G‘𝐺) | |
36 | 2, 3, 4, 35, 6, 9, 17, 11, 15 | legov 28613 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝑂)(≤G‘𝐺)(𝐵 − 𝑄) ↔ ∃𝑟 ∈ 𝑃 (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 − 𝑂) = (𝐵 − 𝑟)))) |
37 | 34, 36 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑟 ∈ 𝑃 (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 − 𝑂) = (𝐵 − 𝑟))) |
38 | 33, 37 | r19.29a 3168 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 class class class wbr 5166 ‘cfv 6575 (class class class)co 7450 Basecbs 17260 distcds 17322 TarskiGcstrkg 28455 Itvcitv 28461 LineGclng 28462 ≤Gcleg 28610 pInvGcmir 28680 ⟂Gcperpg 28723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-oadd 8528 df-er 8765 df-map 8888 df-pm 8889 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-dju 9972 df-card 10010 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-3 12359 df-n0 12556 df-xnn0 12628 df-z 12642 df-uz 12906 df-fz 13570 df-fzo 13714 df-hash 14382 df-word 14565 df-concat 14621 df-s1 14646 df-s2 14899 df-s3 14900 df-trkgc 28476 df-trkgb 28477 df-trkgcb 28478 df-trkg 28481 df-cgrg 28539 df-leg 28611 df-mir 28681 df-rag 28722 df-perpg 28724 |
This theorem is referenced by: midex 28765 |
Copyright terms: Public domain | W3C validator |