MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mideulem Structured version   Visualization version   GIF version

Theorem mideulem 28680
Description: Lemma for mideu 28682. We can assume mideulem.9 "without loss of generality". (Contributed by Thierry Arnoux, 25-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
mideu.s 𝑆 = (pInvG‘𝐺)
mideu.1 (𝜑𝐴𝑃)
mideu.2 (𝜑𝐵𝑃)
mideulem.1 (𝜑𝐴𝐵)
mideulem.2 (𝜑𝑄𝑃)
mideulem.3 (𝜑𝑂𝑃)
mideulem.4 (𝜑𝑇𝑃)
mideulem.5 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
mideulem.6 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
mideulem.7 (𝜑𝑇 ∈ (𝐴𝐿𝐵))
mideulem.8 (𝜑𝑇 ∈ (𝑄𝐼𝑂))
mideulem.9 (𝜑 → (𝐴 𝑂)(≤G‘𝐺)(𝐵 𝑄))
Assertion
Ref Expression
mideulem (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐼   𝑥,𝑂   𝑥,𝑃   𝑥,𝑄   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝐺(𝑥)   𝐿(𝑥)

Proof of Theorem mideulem
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simprrl 780 . . 3 ((((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) ∧ (𝑥𝑃 ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝑂 = ((𝑆𝑥)‘𝑟)))) → 𝐵 = ((𝑆𝑥)‘𝐴))
2 colperpex.p . . . 4 𝑃 = (Base‘𝐺)
3 colperpex.d . . . 4 = (dist‘𝐺)
4 colperpex.i . . . 4 𝐼 = (Itv‘𝐺)
5 colperpex.l . . . 4 𝐿 = (LineG‘𝐺)
6 colperpex.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝐺 ∈ TarskiG)
8 mideu.s . . . 4 𝑆 = (pInvG‘𝐺)
9 mideu.1 . . . . 5 (𝜑𝐴𝑃)
109ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝐴𝑃)
11 mideu.2 . . . . 5 (𝜑𝐵𝑃)
1211ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝐵𝑃)
13 mideulem.1 . . . . 5 (𝜑𝐴𝐵)
1413ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝐴𝐵)
15 mideulem.2 . . . . 5 (𝜑𝑄𝑃)
1615ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑄𝑃)
17 mideulem.3 . . . . 5 (𝜑𝑂𝑃)
1817ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑂𝑃)
19 mideulem.4 . . . . 5 (𝜑𝑇𝑃)
2019ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑇𝑃)
21 mideulem.5 . . . . 5 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
2221ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
23 mideulem.6 . . . . 5 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
2423ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
25 mideulem.7 . . . . 5 (𝜑𝑇 ∈ (𝐴𝐿𝐵))
2625ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑇 ∈ (𝐴𝐿𝐵))
27 mideulem.8 . . . . 5 (𝜑𝑇 ∈ (𝑄𝐼𝑂))
2827ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑇 ∈ (𝑄𝐼𝑂))
29 simplr 768 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑟𝑃)
30 simprl 770 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑟 ∈ (𝐵𝐼𝑄))
31 simprr 772 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → (𝐴 𝑂) = (𝐵 𝑟))
322, 3, 4, 5, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 29, 30, 31opphllem 28679 . . 3 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → ∃𝑥𝑃 (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝑂 = ((𝑆𝑥)‘𝑟)))
331, 32reximddv 3158 . 2 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
34 mideulem.9 . . 3 (𝜑 → (𝐴 𝑂)(≤G‘𝐺)(𝐵 𝑄))
35 eqid 2734 . . . 4 (≤G‘𝐺) = (≤G‘𝐺)
362, 3, 4, 35, 6, 9, 17, 11, 15legov 28529 . . 3 (𝜑 → ((𝐴 𝑂)(≤G‘𝐺)(𝐵 𝑄) ↔ ∃𝑟𝑃 (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))))
3734, 36mpbid 232 . 2 (𝜑 → ∃𝑟𝑃 (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟)))
3833, 37r19.29a 3149 1 (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  wrex 3059   class class class wbr 5123  cfv 6541  (class class class)co 7413  Basecbs 17229  distcds 17282  TarskiGcstrkg 28371  Itvcitv 28377  LineGclng 28378  ≤Gcleg 28526  pInvGcmir 28596  ⟂Gcperpg 28639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-oadd 8492  df-er 8727  df-map 8850  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-dju 9923  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-xnn0 12583  df-z 12597  df-uz 12861  df-fz 13530  df-fzo 13677  df-hash 14352  df-word 14535  df-concat 14591  df-s1 14616  df-s2 14869  df-s3 14870  df-trkgc 28392  df-trkgb 28393  df-trkgcb 28394  df-trkg 28397  df-cgrg 28455  df-leg 28527  df-mir 28597  df-rag 28638  df-perpg 28640
This theorem is referenced by:  midex  28681
  Copyright terms: Public domain W3C validator