MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mideulem Structured version   Visualization version   GIF version

Theorem mideulem 28669
Description: Lemma for mideu 28671. We can assume mideulem.9 "without loss of generality". (Contributed by Thierry Arnoux, 25-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
mideu.s 𝑆 = (pInvG‘𝐺)
mideu.1 (𝜑𝐴𝑃)
mideu.2 (𝜑𝐵𝑃)
mideulem.1 (𝜑𝐴𝐵)
mideulem.2 (𝜑𝑄𝑃)
mideulem.3 (𝜑𝑂𝑃)
mideulem.4 (𝜑𝑇𝑃)
mideulem.5 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
mideulem.6 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
mideulem.7 (𝜑𝑇 ∈ (𝐴𝐿𝐵))
mideulem.8 (𝜑𝑇 ∈ (𝑄𝐼𝑂))
mideulem.9 (𝜑 → (𝐴 𝑂)(≤G‘𝐺)(𝐵 𝑄))
Assertion
Ref Expression
mideulem (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐼   𝑥,𝑂   𝑥,𝑃   𝑥,𝑄   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝐺(𝑥)   𝐿(𝑥)

Proof of Theorem mideulem
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simprrl 780 . . 3 ((((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) ∧ (𝑥𝑃 ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝑂 = ((𝑆𝑥)‘𝑟)))) → 𝐵 = ((𝑆𝑥)‘𝐴))
2 colperpex.p . . . 4 𝑃 = (Base‘𝐺)
3 colperpex.d . . . 4 = (dist‘𝐺)
4 colperpex.i . . . 4 𝐼 = (Itv‘𝐺)
5 colperpex.l . . . 4 𝐿 = (LineG‘𝐺)
6 colperpex.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝐺 ∈ TarskiG)
8 mideu.s . . . 4 𝑆 = (pInvG‘𝐺)
9 mideu.1 . . . . 5 (𝜑𝐴𝑃)
109ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝐴𝑃)
11 mideu.2 . . . . 5 (𝜑𝐵𝑃)
1211ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝐵𝑃)
13 mideulem.1 . . . . 5 (𝜑𝐴𝐵)
1413ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝐴𝐵)
15 mideulem.2 . . . . 5 (𝜑𝑄𝑃)
1615ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑄𝑃)
17 mideulem.3 . . . . 5 (𝜑𝑂𝑃)
1817ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑂𝑃)
19 mideulem.4 . . . . 5 (𝜑𝑇𝑃)
2019ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑇𝑃)
21 mideulem.5 . . . . 5 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
2221ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
23 mideulem.6 . . . . 5 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
2423ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
25 mideulem.7 . . . . 5 (𝜑𝑇 ∈ (𝐴𝐿𝐵))
2625ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑇 ∈ (𝐴𝐿𝐵))
27 mideulem.8 . . . . 5 (𝜑𝑇 ∈ (𝑄𝐼𝑂))
2827ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑇 ∈ (𝑄𝐼𝑂))
29 simplr 768 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑟𝑃)
30 simprl 770 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑟 ∈ (𝐵𝐼𝑄))
31 simprr 772 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → (𝐴 𝑂) = (𝐵 𝑟))
322, 3, 4, 5, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 29, 30, 31opphllem 28668 . . 3 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → ∃𝑥𝑃 (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝑂 = ((𝑆𝑥)‘𝑟)))
331, 32reximddv 3150 . 2 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
34 mideulem.9 . . 3 (𝜑 → (𝐴 𝑂)(≤G‘𝐺)(𝐵 𝑄))
35 eqid 2730 . . . 4 (≤G‘𝐺) = (≤G‘𝐺)
362, 3, 4, 35, 6, 9, 17, 11, 15legov 28518 . . 3 (𝜑 → ((𝐴 𝑂)(≤G‘𝐺)(𝐵 𝑄) ↔ ∃𝑟𝑃 (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))))
3734, 36mpbid 232 . 2 (𝜑 → ∃𝑟𝑃 (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟)))
3833, 37r19.29a 3142 1 (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054   class class class wbr 5109  cfv 6513  (class class class)co 7389  Basecbs 17185  distcds 17235  TarskiGcstrkg 28360  Itvcitv 28366  LineGclng 28367  ≤Gcleg 28515  pInvGcmir 28585  ⟂Gcperpg 28628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-oadd 8440  df-er 8673  df-map 8803  df-pm 8804  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-dju 9860  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-n0 12449  df-xnn0 12522  df-z 12536  df-uz 12800  df-fz 13475  df-fzo 13622  df-hash 14302  df-word 14485  df-concat 14542  df-s1 14567  df-s2 14820  df-s3 14821  df-trkgc 28381  df-trkgb 28382  df-trkgcb 28383  df-trkg 28386  df-cgrg 28444  df-leg 28516  df-mir 28586  df-rag 28627  df-perpg 28629
This theorem is referenced by:  midex  28670
  Copyright terms: Public domain W3C validator