MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mideulem Structured version   Visualization version   GIF version

Theorem mideulem 28681
Description: Lemma for mideu 28683. We can assume mideulem.9 "without loss of generality". (Contributed by Thierry Arnoux, 25-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
mideu.s 𝑆 = (pInvG‘𝐺)
mideu.1 (𝜑𝐴𝑃)
mideu.2 (𝜑𝐵𝑃)
mideulem.1 (𝜑𝐴𝐵)
mideulem.2 (𝜑𝑄𝑃)
mideulem.3 (𝜑𝑂𝑃)
mideulem.4 (𝜑𝑇𝑃)
mideulem.5 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
mideulem.6 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
mideulem.7 (𝜑𝑇 ∈ (𝐴𝐿𝐵))
mideulem.8 (𝜑𝑇 ∈ (𝑄𝐼𝑂))
mideulem.9 (𝜑 → (𝐴 𝑂)(≤G‘𝐺)(𝐵 𝑄))
Assertion
Ref Expression
mideulem (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐼   𝑥,𝑂   𝑥,𝑃   𝑥,𝑄   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝐺(𝑥)   𝐿(𝑥)

Proof of Theorem mideulem
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simprrl 780 . . 3 ((((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) ∧ (𝑥𝑃 ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝑂 = ((𝑆𝑥)‘𝑟)))) → 𝐵 = ((𝑆𝑥)‘𝐴))
2 colperpex.p . . . 4 𝑃 = (Base‘𝐺)
3 colperpex.d . . . 4 = (dist‘𝐺)
4 colperpex.i . . . 4 𝐼 = (Itv‘𝐺)
5 colperpex.l . . . 4 𝐿 = (LineG‘𝐺)
6 colperpex.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝐺 ∈ TarskiG)
8 mideu.s . . . 4 𝑆 = (pInvG‘𝐺)
9 mideu.1 . . . . 5 (𝜑𝐴𝑃)
109ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝐴𝑃)
11 mideu.2 . . . . 5 (𝜑𝐵𝑃)
1211ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝐵𝑃)
13 mideulem.1 . . . . 5 (𝜑𝐴𝐵)
1413ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝐴𝐵)
15 mideulem.2 . . . . 5 (𝜑𝑄𝑃)
1615ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑄𝑃)
17 mideulem.3 . . . . 5 (𝜑𝑂𝑃)
1817ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑂𝑃)
19 mideulem.4 . . . . 5 (𝜑𝑇𝑃)
2019ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑇𝑃)
21 mideulem.5 . . . . 5 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
2221ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
23 mideulem.6 . . . . 5 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
2423ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
25 mideulem.7 . . . . 5 (𝜑𝑇 ∈ (𝐴𝐿𝐵))
2625ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑇 ∈ (𝐴𝐿𝐵))
27 mideulem.8 . . . . 5 (𝜑𝑇 ∈ (𝑄𝐼𝑂))
2827ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑇 ∈ (𝑄𝐼𝑂))
29 simplr 768 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑟𝑃)
30 simprl 770 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑟 ∈ (𝐵𝐼𝑄))
31 simprr 772 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → (𝐴 𝑂) = (𝐵 𝑟))
322, 3, 4, 5, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 29, 30, 31opphllem 28680 . . 3 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → ∃𝑥𝑃 (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝑂 = ((𝑆𝑥)‘𝑟)))
331, 32reximddv 3145 . 2 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
34 mideulem.9 . . 3 (𝜑 → (𝐴 𝑂)(≤G‘𝐺)(𝐵 𝑄))
35 eqid 2729 . . . 4 (≤G‘𝐺) = (≤G‘𝐺)
362, 3, 4, 35, 6, 9, 17, 11, 15legov 28530 . . 3 (𝜑 → ((𝐴 𝑂)(≤G‘𝐺)(𝐵 𝑄) ↔ ∃𝑟𝑃 (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))))
3734, 36mpbid 232 . 2 (𝜑 → ∃𝑟𝑃 (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟)))
3833, 37r19.29a 3137 1 (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  distcds 17170  TarskiGcstrkg 28372  Itvcitv 28378  LineGclng 28379  ≤Gcleg 28527  pInvGcmir 28597  ⟂Gcperpg 28640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-s2 14755  df-s3 14756  df-trkgc 28393  df-trkgb 28394  df-trkgcb 28395  df-trkg 28398  df-cgrg 28456  df-leg 28528  df-mir 28598  df-rag 28639  df-perpg 28641
This theorem is referenced by:  midex  28682
  Copyright terms: Public domain W3C validator