MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mideulem Structured version   Visualization version   GIF version

Theorem mideulem 28714
Description: Lemma for mideu 28716. We can assume mideulem.9 "without loss of generality". (Contributed by Thierry Arnoux, 25-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
mideu.s 𝑆 = (pInvG‘𝐺)
mideu.1 (𝜑𝐴𝑃)
mideu.2 (𝜑𝐵𝑃)
mideulem.1 (𝜑𝐴𝐵)
mideulem.2 (𝜑𝑄𝑃)
mideulem.3 (𝜑𝑂𝑃)
mideulem.4 (𝜑𝑇𝑃)
mideulem.5 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
mideulem.6 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
mideulem.7 (𝜑𝑇 ∈ (𝐴𝐿𝐵))
mideulem.8 (𝜑𝑇 ∈ (𝑄𝐼𝑂))
mideulem.9 (𝜑 → (𝐴 𝑂)(≤G‘𝐺)(𝐵 𝑄))
Assertion
Ref Expression
mideulem (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐼   𝑥,𝑂   𝑥,𝑃   𝑥,𝑄   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝐺(𝑥)   𝐿(𝑥)

Proof of Theorem mideulem
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simprrl 780 . . 3 ((((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) ∧ (𝑥𝑃 ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝑂 = ((𝑆𝑥)‘𝑟)))) → 𝐵 = ((𝑆𝑥)‘𝐴))
2 colperpex.p . . . 4 𝑃 = (Base‘𝐺)
3 colperpex.d . . . 4 = (dist‘𝐺)
4 colperpex.i . . . 4 𝐼 = (Itv‘𝐺)
5 colperpex.l . . . 4 𝐿 = (LineG‘𝐺)
6 colperpex.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝐺 ∈ TarskiG)
8 mideu.s . . . 4 𝑆 = (pInvG‘𝐺)
9 mideu.1 . . . . 5 (𝜑𝐴𝑃)
109ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝐴𝑃)
11 mideu.2 . . . . 5 (𝜑𝐵𝑃)
1211ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝐵𝑃)
13 mideulem.1 . . . . 5 (𝜑𝐴𝐵)
1413ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝐴𝐵)
15 mideulem.2 . . . . 5 (𝜑𝑄𝑃)
1615ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑄𝑃)
17 mideulem.3 . . . . 5 (𝜑𝑂𝑃)
1817ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑂𝑃)
19 mideulem.4 . . . . 5 (𝜑𝑇𝑃)
2019ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑇𝑃)
21 mideulem.5 . . . . 5 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
2221ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
23 mideulem.6 . . . . 5 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
2423ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
25 mideulem.7 . . . . 5 (𝜑𝑇 ∈ (𝐴𝐿𝐵))
2625ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑇 ∈ (𝐴𝐿𝐵))
27 mideulem.8 . . . . 5 (𝜑𝑇 ∈ (𝑄𝐼𝑂))
2827ad2antrr 726 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑇 ∈ (𝑄𝐼𝑂))
29 simplr 768 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑟𝑃)
30 simprl 770 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑟 ∈ (𝐵𝐼𝑄))
31 simprr 772 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → (𝐴 𝑂) = (𝐵 𝑟))
322, 3, 4, 5, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 29, 30, 31opphllem 28713 . . 3 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → ∃𝑥𝑃 (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝑂 = ((𝑆𝑥)‘𝑟)))
331, 32reximddv 3148 . 2 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
34 mideulem.9 . . 3 (𝜑 → (𝐴 𝑂)(≤G‘𝐺)(𝐵 𝑄))
35 eqid 2731 . . . 4 (≤G‘𝐺) = (≤G‘𝐺)
362, 3, 4, 35, 6, 9, 17, 11, 15legov 28563 . . 3 (𝜑 → ((𝐴 𝑂)(≤G‘𝐺)(𝐵 𝑄) ↔ ∃𝑟𝑃 (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))))
3734, 36mpbid 232 . 2 (𝜑 → ∃𝑟𝑃 (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟)))
3833, 37r19.29a 3140 1 (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  distcds 17170  TarskiGcstrkg 28405  Itvcitv 28411  LineGclng 28412  ≤Gcleg 28560  pInvGcmir 28630  ⟂Gcperpg 28673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14504  df-s2 14755  df-s3 14756  df-trkgc 28426  df-trkgb 28427  df-trkgcb 28428  df-trkg 28431  df-cgrg 28489  df-leg 28561  df-mir 28631  df-rag 28672  df-perpg 28674
This theorem is referenced by:  midex  28715
  Copyright terms: Public domain W3C validator