MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mideulem Structured version   Visualization version   GIF version

Theorem mideulem 28764
Description: Lemma for mideu 28766. We can assume mideulem.9 "without loss of generality". (Contributed by Thierry Arnoux, 25-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
mideu.s 𝑆 = (pInvG‘𝐺)
mideu.1 (𝜑𝐴𝑃)
mideu.2 (𝜑𝐵𝑃)
mideulem.1 (𝜑𝐴𝐵)
mideulem.2 (𝜑𝑄𝑃)
mideulem.3 (𝜑𝑂𝑃)
mideulem.4 (𝜑𝑇𝑃)
mideulem.5 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
mideulem.6 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
mideulem.7 (𝜑𝑇 ∈ (𝐴𝐿𝐵))
mideulem.8 (𝜑𝑇 ∈ (𝑄𝐼𝑂))
mideulem.9 (𝜑 → (𝐴 𝑂)(≤G‘𝐺)(𝐵 𝑄))
Assertion
Ref Expression
mideulem (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐼   𝑥,𝑂   𝑥,𝑃   𝑥,𝑄   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝐺(𝑥)   𝐿(𝑥)

Proof of Theorem mideulem
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simprrl 780 . . 3 ((((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) ∧ (𝑥𝑃 ∧ (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝑂 = ((𝑆𝑥)‘𝑟)))) → 𝐵 = ((𝑆𝑥)‘𝐴))
2 colperpex.p . . . 4 𝑃 = (Base‘𝐺)
3 colperpex.d . . . 4 = (dist‘𝐺)
4 colperpex.i . . . 4 𝐼 = (Itv‘𝐺)
5 colperpex.l . . . 4 𝐿 = (LineG‘𝐺)
6 colperpex.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76ad2antrr 725 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝐺 ∈ TarskiG)
8 mideu.s . . . 4 𝑆 = (pInvG‘𝐺)
9 mideu.1 . . . . 5 (𝜑𝐴𝑃)
109ad2antrr 725 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝐴𝑃)
11 mideu.2 . . . . 5 (𝜑𝐵𝑃)
1211ad2antrr 725 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝐵𝑃)
13 mideulem.1 . . . . 5 (𝜑𝐴𝐵)
1413ad2antrr 725 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝐴𝐵)
15 mideulem.2 . . . . 5 (𝜑𝑄𝑃)
1615ad2antrr 725 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑄𝑃)
17 mideulem.3 . . . . 5 (𝜑𝑂𝑃)
1817ad2antrr 725 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑂𝑃)
19 mideulem.4 . . . . 5 (𝜑𝑇𝑃)
2019ad2antrr 725 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑇𝑃)
21 mideulem.5 . . . . 5 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
2221ad2antrr 725 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
23 mideulem.6 . . . . 5 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
2423ad2antrr 725 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
25 mideulem.7 . . . . 5 (𝜑𝑇 ∈ (𝐴𝐿𝐵))
2625ad2antrr 725 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑇 ∈ (𝐴𝐿𝐵))
27 mideulem.8 . . . . 5 (𝜑𝑇 ∈ (𝑄𝐼𝑂))
2827ad2antrr 725 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑇 ∈ (𝑄𝐼𝑂))
29 simplr 768 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑟𝑃)
30 simprl 770 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → 𝑟 ∈ (𝐵𝐼𝑄))
31 simprr 772 . . . 4 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → (𝐴 𝑂) = (𝐵 𝑟))
322, 3, 4, 5, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 29, 30, 31opphllem 28763 . . 3 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → ∃𝑥𝑃 (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝑂 = ((𝑆𝑥)‘𝑟)))
331, 32reximddv 3177 . 2 (((𝜑𝑟𝑃) ∧ (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
34 mideulem.9 . . 3 (𝜑 → (𝐴 𝑂)(≤G‘𝐺)(𝐵 𝑄))
35 eqid 2740 . . . 4 (≤G‘𝐺) = (≤G‘𝐺)
362, 3, 4, 35, 6, 9, 17, 11, 15legov 28613 . . 3 (𝜑 → ((𝐴 𝑂)(≤G‘𝐺)(𝐵 𝑄) ↔ ∃𝑟𝑃 (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟))))
3734, 36mpbid 232 . 2 (𝜑 → ∃𝑟𝑃 (𝑟 ∈ (𝐵𝐼𝑄) ∧ (𝐴 𝑂) = (𝐵 𝑟)))
3833, 37r19.29a 3168 1 (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  cfv 6575  (class class class)co 7450  Basecbs 17260  distcds 17322  TarskiGcstrkg 28455  Itvcitv 28461  LineGclng 28462  ≤Gcleg 28610  pInvGcmir 28680  ⟂Gcperpg 28723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-oadd 8528  df-er 8765  df-map 8888  df-pm 8889  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-dju 9972  df-card 10010  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-2 12358  df-3 12359  df-n0 12556  df-xnn0 12628  df-z 12642  df-uz 12906  df-fz 13570  df-fzo 13714  df-hash 14382  df-word 14565  df-concat 14621  df-s1 14646  df-s2 14899  df-s3 14900  df-trkgc 28476  df-trkgb 28477  df-trkgcb 28478  df-trkg 28481  df-cgrg 28539  df-leg 28611  df-mir 28681  df-rag 28722  df-perpg 28724
This theorem is referenced by:  midex  28765
  Copyright terms: Public domain W3C validator