Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg1cex Structured version   Visualization version   GIF version

Theorem cdlemg1cex 40116
Description: Any translation is one of our 𝐹 s. TODO: fix comment, move to its own block maybe? Would this help for cdlemf 40091? (Contributed by NM, 17-Apr-2013.)
Hypotheses
Ref Expression
cdlemg1c.l ≀ = (leβ€˜πΎ)
cdlemg1c.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg1c.h 𝐻 = (LHypβ€˜πΎ)
cdlemg1c.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdlemg1cex ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝐹 ∈ 𝑇 ↔ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž))))
Distinct variable groups:   𝑓,𝑝,π‘ž,𝐴   𝑓,𝐹,𝑝,π‘ž   𝑓,𝐻,𝑝,π‘ž   𝑓,𝐾,𝑝,π‘ž   ≀ ,𝑓,𝑝,π‘ž   𝑇,𝑓,𝑝,π‘ž   𝑓,π‘Š,𝑝,π‘ž

Proof of Theorem cdlemg1cex
StepHypRef Expression
1 cdlemg1c.l . . . . . . . 8 ≀ = (leβ€˜πΎ)
2 cdlemg1c.a . . . . . . . 8 𝐴 = (Atomsβ€˜πΎ)
3 cdlemg1c.h . . . . . . . 8 𝐻 = (LHypβ€˜πΎ)
4 cdlemg1c.t . . . . . . . 8 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
51, 2, 3, 4ltrnel 39667 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) β†’ ((πΉβ€˜π‘) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘) ≀ π‘Š))
653expa 1115 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) β†’ ((πΉβ€˜π‘) ∈ 𝐴 ∧ Β¬ (πΉβ€˜π‘) ≀ π‘Š))
76simpld 493 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) β†’ (πΉβ€˜π‘) ∈ 𝐴)
8 simprr 771 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) β†’ Β¬ 𝑝 ≀ π‘Š)
96simprd 494 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) β†’ Β¬ (πΉβ€˜π‘) ≀ π‘Š)
10 simpll 765 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
11 simpr 483 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) β†’ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š))
12 simplr 767 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) β†’ 𝐹 ∈ 𝑇)
131, 2, 3, 4cdlemeiota 40113 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) β†’ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = (πΉβ€˜π‘)))
1410, 11, 12, 13syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) β†’ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = (πΉβ€˜π‘)))
15 breq1 5146 . . . . . . . 8 (π‘ž = (πΉβ€˜π‘) β†’ (π‘ž ≀ π‘Š ↔ (πΉβ€˜π‘) ≀ π‘Š))
1615notbid 317 . . . . . . 7 (π‘ž = (πΉβ€˜π‘) β†’ (Β¬ π‘ž ≀ π‘Š ↔ Β¬ (πΉβ€˜π‘) ≀ π‘Š))
17 eqeq2 2737 . . . . . . . . 9 (π‘ž = (πΉβ€˜π‘) β†’ ((π‘“β€˜π‘) = π‘ž ↔ (π‘“β€˜π‘) = (πΉβ€˜π‘)))
1817riotabidv 7373 . . . . . . . 8 (π‘ž = (πΉβ€˜π‘) β†’ (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž) = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = (πΉβ€˜π‘)))
1918eqeq2d 2736 . . . . . . 7 (π‘ž = (πΉβ€˜π‘) β†’ (𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž) ↔ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = (πΉβ€˜π‘))))
2016, 193anbi23d 1435 . . . . . 6 (π‘ž = (πΉβ€˜π‘) β†’ ((Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž)) ↔ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ (πΉβ€˜π‘) ≀ π‘Š ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = (πΉβ€˜π‘)))))
2120rspcev 3602 . . . . 5 (((πΉβ€˜π‘) ∈ 𝐴 ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ (πΉβ€˜π‘) ≀ π‘Š ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = (πΉβ€˜π‘)))) β†’ βˆƒπ‘ž ∈ 𝐴 (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž)))
227, 8, 9, 14, 21syl13anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) β†’ βˆƒπ‘ž ∈ 𝐴 (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž)))
231, 2, 3lhpexnle 39534 . . . . 5 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆƒπ‘ ∈ 𝐴 Β¬ 𝑝 ≀ π‘Š)
2423adantr 479 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ βˆƒπ‘ ∈ 𝐴 Β¬ 𝑝 ≀ π‘Š)
2522, 24reximddv 3161 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž)))
2625ex 411 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝐹 ∈ 𝑇 β†’ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž))))
27 simp1 1133 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
28 simp2l 1196 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž))) β†’ 𝑝 ∈ 𝐴)
29 simp31 1206 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž))) β†’ Β¬ 𝑝 ≀ π‘Š)
3028, 29jca 510 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž))) β†’ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š))
31 simp2r 1197 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž))) β†’ π‘ž ∈ 𝐴)
32 simp32 1207 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž))) β†’ Β¬ π‘ž ≀ π‘Š)
3331, 32jca 510 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž))) β†’ (π‘ž ∈ 𝐴 ∧ Β¬ π‘ž ≀ π‘Š))
34 simp33 1208 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž))) β†’ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž))
351, 2, 3, 4cdlemg1ci2 40114 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š) ∧ (π‘ž ∈ 𝐴 ∧ Β¬ π‘ž ≀ π‘Š)) ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž)) β†’ 𝐹 ∈ 𝑇)
3627, 30, 33, 34, 35syl31anc 1370 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) ∧ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž))) β†’ 𝐹 ∈ 𝑇)
37363exp 1116 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ((𝑝 ∈ 𝐴 ∧ π‘ž ∈ 𝐴) β†’ ((Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž)) β†’ 𝐹 ∈ 𝑇)))
3837rexlimdvv 3201 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž)) β†’ 𝐹 ∈ 𝑇))
3926, 38impbid 211 1 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝐹 ∈ 𝑇 ↔ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘) = π‘ž))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3060   class class class wbr 5143  β€˜cfv 6542  β„©crio 7370  lecple 17237  Atomscatm 38790  HLchlt 38877  LHypclh 39512  LTrncltrn 39629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-riotaBAD 38480
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-1st 7989  df-2nd 7990  df-undef 8275  df-map 8843  df-proset 18284  df-poset 18302  df-plt 18319  df-lub 18335  df-glb 18336  df-join 18337  df-meet 18338  df-p0 18414  df-p1 18415  df-lat 18421  df-clat 18488  df-oposet 38703  df-ol 38705  df-oml 38706  df-covers 38793  df-ats 38794  df-atl 38825  df-cvlat 38849  df-hlat 38878  df-llines 39026  df-lplanes 39027  df-lvols 39028  df-lines 39029  df-psubsp 39031  df-pmap 39032  df-padd 39324  df-lhyp 39516  df-laut 39517  df-ldil 39632  df-ltrn 39633  df-trl 39687
This theorem is referenced by:  cdlemg2cex  40119
  Copyright terms: Public domain W3C validator