Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg1cex Structured version   Visualization version   GIF version

Theorem cdlemg1cex 38602
Description: Any translation is one of our 𝐹 s. TODO: fix comment, move to its own block maybe? Would this help for cdlemf 38577? (Contributed by NM, 17-Apr-2013.)
Hypotheses
Ref Expression
cdlemg1c.l = (le‘𝐾)
cdlemg1c.a 𝐴 = (Atoms‘𝐾)
cdlemg1c.h 𝐻 = (LHyp‘𝐾)
cdlemg1c.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg1cex ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝑇 ↔ ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))))
Distinct variable groups:   𝑓,𝑝,𝑞,𝐴   𝑓,𝐹,𝑝,𝑞   𝑓,𝐻,𝑝,𝑞   𝑓,𝐾,𝑝,𝑞   ,𝑓,𝑝,𝑞   𝑇,𝑓,𝑝,𝑞   𝑓,𝑊,𝑝,𝑞

Proof of Theorem cdlemg1cex
StepHypRef Expression
1 cdlemg1c.l . . . . . . . 8 = (le‘𝐾)
2 cdlemg1c.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
3 cdlemg1c.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
4 cdlemg1c.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
51, 2, 3, 4ltrnel 38153 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → ((𝐹𝑝) ∈ 𝐴 ∧ ¬ (𝐹𝑝) 𝑊))
653expa 1117 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → ((𝐹𝑝) ∈ 𝐴 ∧ ¬ (𝐹𝑝) 𝑊))
76simpld 495 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → (𝐹𝑝) ∈ 𝐴)
8 simprr 770 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → ¬ 𝑝 𝑊)
96simprd 496 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → ¬ (𝐹𝑝) 𝑊)
10 simpll 764 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 simpr 485 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → (𝑝𝐴 ∧ ¬ 𝑝 𝑊))
12 simplr 766 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → 𝐹𝑇)
131, 2, 3, 4cdlemeiota 38599 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝐹𝑇) → 𝐹 = (𝑓𝑇 (𝑓𝑝) = (𝐹𝑝)))
1410, 11, 12, 13syl3anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → 𝐹 = (𝑓𝑇 (𝑓𝑝) = (𝐹𝑝)))
15 breq1 5077 . . . . . . . 8 (𝑞 = (𝐹𝑝) → (𝑞 𝑊 ↔ (𝐹𝑝) 𝑊))
1615notbid 318 . . . . . . 7 (𝑞 = (𝐹𝑝) → (¬ 𝑞 𝑊 ↔ ¬ (𝐹𝑝) 𝑊))
17 eqeq2 2750 . . . . . . . . 9 (𝑞 = (𝐹𝑝) → ((𝑓𝑝) = 𝑞 ↔ (𝑓𝑝) = (𝐹𝑝)))
1817riotabidv 7234 . . . . . . . 8 (𝑞 = (𝐹𝑝) → (𝑓𝑇 (𝑓𝑝) = 𝑞) = (𝑓𝑇 (𝑓𝑝) = (𝐹𝑝)))
1918eqeq2d 2749 . . . . . . 7 (𝑞 = (𝐹𝑝) → (𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞) ↔ 𝐹 = (𝑓𝑇 (𝑓𝑝) = (𝐹𝑝))))
2016, 193anbi23d 1438 . . . . . 6 (𝑞 = (𝐹𝑝) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)) ↔ (¬ 𝑝 𝑊 ∧ ¬ (𝐹𝑝) 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = (𝐹𝑝)))))
2120rspcev 3561 . . . . 5 (((𝐹𝑝) ∈ 𝐴 ∧ (¬ 𝑝 𝑊 ∧ ¬ (𝐹𝑝) 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = (𝐹𝑝)))) → ∃𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)))
227, 8, 9, 14, 21syl13anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) → ∃𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)))
231, 2, 3lhpexnle 38020 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 ¬ 𝑝 𝑊)
2423adantr 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ∃𝑝𝐴 ¬ 𝑝 𝑊)
2522, 24reximddv 3204 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)))
2625ex 413 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝑇 → ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))))
27 simp1 1135 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
28 simp2l 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))) → 𝑝𝐴)
29 simp31 1208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))) → ¬ 𝑝 𝑊)
3028, 29jca 512 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))) → (𝑝𝐴 ∧ ¬ 𝑝 𝑊))
31 simp2r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))) → 𝑞𝐴)
32 simp32 1209 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))) → ¬ 𝑞 𝑊)
3331, 32jca 512 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
34 simp33 1210 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))) → 𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))
351, 2, 3, 4cdlemg1ci2 38600 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) ∧ 𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)) → 𝐹𝑇)
3627, 30, 33, 34, 35syl31anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴𝑞𝐴) ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))) → 𝐹𝑇)
37363exp 1118 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑝𝐴𝑞𝐴) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)) → 𝐹𝑇)))
3837rexlimdvv 3222 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞)) → 𝐹𝑇))
3926, 38impbid 211 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝑇 ↔ ∃𝑝𝐴𝑞𝐴𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = (𝑓𝑇 (𝑓𝑝) = 𝑞))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  cfv 6433  crio 7231  lecple 16969  Atomscatm 37277  HLchlt 37364  LHypclh 37998  LTrncltrn 38115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-undef 8089  df-map 8617  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173
This theorem is referenced by:  cdlemg2cex  38605
  Copyright terms: Public domain W3C validator