Proof of Theorem cdlemg1cex
Step | Hyp | Ref
| Expression |
1 | | cdlemg1c.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
2 | | cdlemg1c.a |
. . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) |
3 | | cdlemg1c.h |
. . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) |
4 | | cdlemg1c.t |
. . . . . . . 8
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
5 | 1, 2, 3, 4 | ltrnel 38080 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) → ((𝐹‘𝑝) ∈ 𝐴 ∧ ¬ (𝐹‘𝑝) ≤ 𝑊)) |
6 | 5 | 3expa 1116 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) → ((𝐹‘𝑝) ∈ 𝐴 ∧ ¬ (𝐹‘𝑝) ≤ 𝑊)) |
7 | 6 | simpld 494 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) → (𝐹‘𝑝) ∈ 𝐴) |
8 | | simprr 769 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) → ¬ 𝑝 ≤ 𝑊) |
9 | 6 | simprd 495 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) → ¬ (𝐹‘𝑝) ≤ 𝑊) |
10 | | simpll 763 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
11 | | simpr 484 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) → (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) |
12 | | simplr 765 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
13 | 1, 2, 3, 4 | cdlemeiota 38526 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) → 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = (𝐹‘𝑝))) |
14 | 10, 11, 12, 13 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) → 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = (𝐹‘𝑝))) |
15 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑞 = (𝐹‘𝑝) → (𝑞 ≤ 𝑊 ↔ (𝐹‘𝑝) ≤ 𝑊)) |
16 | 15 | notbid 317 |
. . . . . . 7
⊢ (𝑞 = (𝐹‘𝑝) → (¬ 𝑞 ≤ 𝑊 ↔ ¬ (𝐹‘𝑝) ≤ 𝑊)) |
17 | | eqeq2 2750 |
. . . . . . . . 9
⊢ (𝑞 = (𝐹‘𝑝) → ((𝑓‘𝑝) = 𝑞 ↔ (𝑓‘𝑝) = (𝐹‘𝑝))) |
18 | 17 | riotabidv 7214 |
. . . . . . . 8
⊢ (𝑞 = (𝐹‘𝑝) → (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞) = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = (𝐹‘𝑝))) |
19 | 18 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑞 = (𝐹‘𝑝) → (𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞) ↔ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = (𝐹‘𝑝)))) |
20 | 16, 19 | 3anbi23d 1437 |
. . . . . 6
⊢ (𝑞 = (𝐹‘𝑝) → ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞)) ↔ (¬ 𝑝 ≤ 𝑊 ∧ ¬ (𝐹‘𝑝) ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = (𝐹‘𝑝))))) |
21 | 20 | rspcev 3552 |
. . . . 5
⊢ (((𝐹‘𝑝) ∈ 𝐴 ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ (𝐹‘𝑝) ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = (𝐹‘𝑝)))) → ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞))) |
22 | 7, 8, 9, 14, 21 | syl13anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞))) |
23 | 1, 2, 3 | lhpexnle 37947 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 ¬ 𝑝 ≤ 𝑊) |
24 | 23 | adantr 480 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ∃𝑝 ∈ 𝐴 ¬ 𝑝 ≤ 𝑊) |
25 | 22, 24 | reximddv 3203 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞))) |
26 | 25 | ex 412 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞)))) |
27 | | simp1 1134 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
28 | | simp2l 1197 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞))) → 𝑝 ∈ 𝐴) |
29 | | simp31 1207 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞))) → ¬ 𝑝 ≤ 𝑊) |
30 | 28, 29 | jca 511 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞))) → (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) |
31 | | simp2r 1198 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞))) → 𝑞 ∈ 𝐴) |
32 | | simp32 1208 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞))) → ¬ 𝑞 ≤ 𝑊) |
33 | 31, 32 | jca 511 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞))) → (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) |
34 | | simp33 1209 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞))) → 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞)) |
35 | 1, 2, 3, 4 | cdlemg1ci2 38527 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞)) → 𝐹 ∈ 𝑇) |
36 | 27, 30, 33, 34, 35 | syl31anc 1371 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞))) → 𝐹 ∈ 𝑇) |
37 | 36 | 3exp 1117 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) → ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞)) → 𝐹 ∈ 𝑇))) |
38 | 37 | rexlimdvv 3221 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞)) → 𝐹 ∈ 𝑇)) |
39 | 26, 38 | impbid 211 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑝) = 𝑞)))) |