MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexex Structured version   Visualization version   GIF version

Theorem gexex 19715
Description: In an abelian group with finite exponent, there is an element in the group with order equal to the exponent. In other words, all orders of elements divide the largest order of an element of the group. This fails if 𝐸 = 0, for example in an infinite p-group, where there are elements of arbitrarily large orders (so 𝐸 is zero) but no elements of infinite order. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexex.1 𝑋 = (Baseβ€˜πΊ)
gexex.2 𝐸 = (gExβ€˜πΊ)
gexex.3 𝑂 = (odβ€˜πΊ)
Assertion
Ref Expression
gexex ((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) β†’ βˆƒπ‘₯ ∈ 𝑋 (π‘‚β€˜π‘₯) = 𝐸)
Distinct variable groups:   π‘₯,𝐸   π‘₯,𝐺   π‘₯,𝑂   π‘₯,𝑋

Proof of Theorem gexex
Dummy variables 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gexex.1 . . 3 𝑋 = (Baseβ€˜πΊ)
2 gexex.2 . . 3 𝐸 = (gExβ€˜πΊ)
3 gexex.3 . . 3 𝑂 = (odβ€˜πΊ)
4 simpll 765 . . 3 (((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) ∧ (π‘₯ ∈ 𝑋 ∧ (π‘‚β€˜π‘₯) = sup(ran 𝑂, ℝ, < ))) β†’ 𝐺 ∈ Abel)
5 simplr 767 . . 3 (((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) ∧ (π‘₯ ∈ 𝑋 ∧ (π‘‚β€˜π‘₯) = sup(ran 𝑂, ℝ, < ))) β†’ 𝐸 ∈ β„•)
6 simprl 769 . . 3 (((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) ∧ (π‘₯ ∈ 𝑋 ∧ (π‘‚β€˜π‘₯) = sup(ran 𝑂, ℝ, < ))) β†’ π‘₯ ∈ 𝑋)
71, 3odf 19399 . . . . . . 7 𝑂:π‘‹βŸΆβ„•0
8 frn 6721 . . . . . . 7 (𝑂:π‘‹βŸΆβ„•0 β†’ ran 𝑂 βŠ† β„•0)
97, 8ax-mp 5 . . . . . 6 ran 𝑂 βŠ† β„•0
10 nn0ssz 12577 . . . . . 6 β„•0 βŠ† β„€
119, 10sstri 3990 . . . . 5 ran 𝑂 βŠ† β„€
12 nnz 12575 . . . . . . . 8 (𝐸 ∈ β„• β†’ 𝐸 ∈ β„€)
1312adantl 482 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) β†’ 𝐸 ∈ β„€)
14 ablgrp 19647 . . . . . . . . . . . 12 (𝐺 ∈ Abel β†’ 𝐺 ∈ Grp)
1514adantr 481 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) β†’ 𝐺 ∈ Grp)
161, 2, 3gexod 19448 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ π‘₯ ∈ 𝑋) β†’ (π‘‚β€˜π‘₯) βˆ₯ 𝐸)
1715, 16sylan 580 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) ∧ π‘₯ ∈ 𝑋) β†’ (π‘‚β€˜π‘₯) βˆ₯ 𝐸)
181, 3odcl 19398 . . . . . . . . . . . . 13 (π‘₯ ∈ 𝑋 β†’ (π‘‚β€˜π‘₯) ∈ β„•0)
1918adantl 482 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) ∧ π‘₯ ∈ 𝑋) β†’ (π‘‚β€˜π‘₯) ∈ β„•0)
2019nn0zd 12580 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) ∧ π‘₯ ∈ 𝑋) β†’ (π‘‚β€˜π‘₯) ∈ β„€)
21 simplr 767 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) ∧ π‘₯ ∈ 𝑋) β†’ 𝐸 ∈ β„•)
22 dvdsle 16249 . . . . . . . . . . 11 (((π‘‚β€˜π‘₯) ∈ β„€ ∧ 𝐸 ∈ β„•) β†’ ((π‘‚β€˜π‘₯) βˆ₯ 𝐸 β†’ (π‘‚β€˜π‘₯) ≀ 𝐸))
2320, 21, 22syl2anc 584 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) ∧ π‘₯ ∈ 𝑋) β†’ ((π‘‚β€˜π‘₯) βˆ₯ 𝐸 β†’ (π‘‚β€˜π‘₯) ≀ 𝐸))
2417, 23mpd 15 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) ∧ π‘₯ ∈ 𝑋) β†’ (π‘‚β€˜π‘₯) ≀ 𝐸)
2524ralrimiva 3146 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) β†’ βˆ€π‘₯ ∈ 𝑋 (π‘‚β€˜π‘₯) ≀ 𝐸)
26 ffn 6714 . . . . . . . . . 10 (𝑂:π‘‹βŸΆβ„•0 β†’ 𝑂 Fn 𝑋)
277, 26ax-mp 5 . . . . . . . . 9 𝑂 Fn 𝑋
28 breq1 5150 . . . . . . . . . 10 (𝑦 = (π‘‚β€˜π‘₯) β†’ (𝑦 ≀ 𝐸 ↔ (π‘‚β€˜π‘₯) ≀ 𝐸))
2928ralrn 7086 . . . . . . . . 9 (𝑂 Fn 𝑋 β†’ (βˆ€π‘¦ ∈ ran 𝑂 𝑦 ≀ 𝐸 ↔ βˆ€π‘₯ ∈ 𝑋 (π‘‚β€˜π‘₯) ≀ 𝐸))
3027, 29ax-mp 5 . . . . . . . 8 (βˆ€π‘¦ ∈ ran 𝑂 𝑦 ≀ 𝐸 ↔ βˆ€π‘₯ ∈ 𝑋 (π‘‚β€˜π‘₯) ≀ 𝐸)
3125, 30sylibr 233 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) β†’ βˆ€π‘¦ ∈ ran 𝑂 𝑦 ≀ 𝐸)
32 brralrspcev 5207 . . . . . . 7 ((𝐸 ∈ β„€ ∧ βˆ€π‘¦ ∈ ran 𝑂 𝑦 ≀ 𝐸) β†’ βˆƒπ‘› ∈ β„€ βˆ€π‘¦ ∈ ran 𝑂 𝑦 ≀ 𝑛)
3313, 31, 32syl2anc 584 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) β†’ βˆƒπ‘› ∈ β„€ βˆ€π‘¦ ∈ ran 𝑂 𝑦 ≀ 𝑛)
3433ad2antrr 724 . . . . 5 ((((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) ∧ (π‘₯ ∈ 𝑋 ∧ (π‘‚β€˜π‘₯) = sup(ran 𝑂, ℝ, < ))) ∧ 𝑦 ∈ 𝑋) β†’ βˆƒπ‘› ∈ β„€ βˆ€π‘¦ ∈ ran 𝑂 𝑦 ≀ 𝑛)
3527a1i 11 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) ∧ (π‘₯ ∈ 𝑋 ∧ (π‘‚β€˜π‘₯) = sup(ran 𝑂, ℝ, < ))) β†’ 𝑂 Fn 𝑋)
36 fnfvelrn 7079 . . . . . 6 ((𝑂 Fn 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ (π‘‚β€˜π‘¦) ∈ ran 𝑂)
3735, 36sylan 580 . . . . 5 ((((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) ∧ (π‘₯ ∈ 𝑋 ∧ (π‘‚β€˜π‘₯) = sup(ran 𝑂, ℝ, < ))) ∧ 𝑦 ∈ 𝑋) β†’ (π‘‚β€˜π‘¦) ∈ ran 𝑂)
38 suprzub 12919 . . . . 5 ((ran 𝑂 βŠ† β„€ ∧ βˆƒπ‘› ∈ β„€ βˆ€π‘¦ ∈ ran 𝑂 𝑦 ≀ 𝑛 ∧ (π‘‚β€˜π‘¦) ∈ ran 𝑂) β†’ (π‘‚β€˜π‘¦) ≀ sup(ran 𝑂, ℝ, < ))
3911, 34, 37, 38mp3an2i 1466 . . . 4 ((((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) ∧ (π‘₯ ∈ 𝑋 ∧ (π‘‚β€˜π‘₯) = sup(ran 𝑂, ℝ, < ))) ∧ 𝑦 ∈ 𝑋) β†’ (π‘‚β€˜π‘¦) ≀ sup(ran 𝑂, ℝ, < ))
40 simplrr 776 . . . 4 ((((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) ∧ (π‘₯ ∈ 𝑋 ∧ (π‘‚β€˜π‘₯) = sup(ran 𝑂, ℝ, < ))) ∧ 𝑦 ∈ 𝑋) β†’ (π‘‚β€˜π‘₯) = sup(ran 𝑂, ℝ, < ))
4139, 40breqtrrd 5175 . . 3 ((((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) ∧ (π‘₯ ∈ 𝑋 ∧ (π‘‚β€˜π‘₯) = sup(ran 𝑂, ℝ, < ))) ∧ 𝑦 ∈ 𝑋) β†’ (π‘‚β€˜π‘¦) ≀ (π‘‚β€˜π‘₯))
421, 2, 3, 4, 5, 6, 41gexexlem 19714 . 2 (((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) ∧ (π‘₯ ∈ 𝑋 ∧ (π‘‚β€˜π‘₯) = sup(ran 𝑂, ℝ, < ))) β†’ (π‘‚β€˜π‘₯) = 𝐸)
431grpbn0 18847 . . . . . 6 (𝐺 ∈ Grp β†’ 𝑋 β‰  βˆ…)
4415, 43syl 17 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) β†’ 𝑋 β‰  βˆ…)
457fdmi 6726 . . . . . . . 8 dom 𝑂 = 𝑋
4645eqeq1i 2737 . . . . . . 7 (dom 𝑂 = βˆ… ↔ 𝑋 = βˆ…)
47 dm0rn0 5922 . . . . . . 7 (dom 𝑂 = βˆ… ↔ ran 𝑂 = βˆ…)
4846, 47bitr3i 276 . . . . . 6 (𝑋 = βˆ… ↔ ran 𝑂 = βˆ…)
4948necon3bii 2993 . . . . 5 (𝑋 β‰  βˆ… ↔ ran 𝑂 β‰  βˆ…)
5044, 49sylib 217 . . . 4 ((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) β†’ ran 𝑂 β‰  βˆ…)
51 suprzcl2 12918 . . . 4 ((ran 𝑂 βŠ† β„€ ∧ ran 𝑂 β‰  βˆ… ∧ βˆƒπ‘› ∈ β„€ βˆ€π‘¦ ∈ ran 𝑂 𝑦 ≀ 𝑛) β†’ sup(ran 𝑂, ℝ, < ) ∈ ran 𝑂)
5211, 50, 33, 51mp3an2i 1466 . . 3 ((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) β†’ sup(ran 𝑂, ℝ, < ) ∈ ran 𝑂)
53 fvelrnb 6949 . . . 4 (𝑂 Fn 𝑋 β†’ (sup(ran 𝑂, ℝ, < ) ∈ ran 𝑂 ↔ βˆƒπ‘₯ ∈ 𝑋 (π‘‚β€˜π‘₯) = sup(ran 𝑂, ℝ, < )))
5427, 53ax-mp 5 . . 3 (sup(ran 𝑂, ℝ, < ) ∈ ran 𝑂 ↔ βˆƒπ‘₯ ∈ 𝑋 (π‘‚β€˜π‘₯) = sup(ran 𝑂, ℝ, < ))
5552, 54sylib 217 . 2 ((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) β†’ βˆƒπ‘₯ ∈ 𝑋 (π‘‚β€˜π‘₯) = sup(ran 𝑂, ℝ, < ))
5642, 55reximddv 3171 1 ((𝐺 ∈ Abel ∧ 𝐸 ∈ β„•) β†’ βˆƒπ‘₯ ∈ 𝑋 (π‘‚β€˜π‘₯) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070   βŠ† wss 3947  βˆ…c0 4321   class class class wbr 5147  dom cdm 5675  ran crn 5676   Fn wfn 6535  βŸΆwf 6536  β€˜cfv 6540  supcsup 9431  β„cr 11105   < clt 11244   ≀ cle 11245  β„•cn 12208  β„•0cn0 12468  β„€cz 12554   βˆ₯ cdvds 16193  Basecbs 17140  Grpcgrp 18815  odcod 19386  gExcgex 19387  Abelcabl 19643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432  df-prm 16605  df-pc 16766  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-od 19390  df-gex 19391  df-cmn 19644  df-abl 19645
This theorem is referenced by:  cyggexb  19761  pgpfaclem3  19947
  Copyright terms: Public domain W3C validator