MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexex Structured version   Visualization version   GIF version

Theorem gexex 19454
Description: In an abelian group with finite exponent, there is an element in the group with order equal to the exponent. In other words, all orders of elements divide the largest order of an element of the group. This fails if 𝐸 = 0, for example in an infinite p-group, where there are elements of arbitrarily large orders (so 𝐸 is zero) but no elements of infinite order. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexex.1 𝑋 = (Base‘𝐺)
gexex.2 𝐸 = (gEx‘𝐺)
gexex.3 𝑂 = (od‘𝐺)
Assertion
Ref Expression
gexex ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∃𝑥𝑋 (𝑂𝑥) = 𝐸)
Distinct variable groups:   𝑥,𝐸   𝑥,𝐺   𝑥,𝑂   𝑥,𝑋

Proof of Theorem gexex
Dummy variables 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gexex.1 . . 3 𝑋 = (Base‘𝐺)
2 gexex.2 . . 3 𝐸 = (gEx‘𝐺)
3 gexex.3 . . 3 𝑂 = (od‘𝐺)
4 simpll 764 . . 3 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) → 𝐺 ∈ Abel)
5 simplr 766 . . 3 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) → 𝐸 ∈ ℕ)
6 simprl 768 . . 3 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) → 𝑥𝑋)
71, 3odf 19145 . . . . . . 7 𝑂:𝑋⟶ℕ0
8 frn 6607 . . . . . . 7 (𝑂:𝑋⟶ℕ0 → ran 𝑂 ⊆ ℕ0)
97, 8ax-mp 5 . . . . . 6 ran 𝑂 ⊆ ℕ0
10 nn0ssz 12341 . . . . . 6 0 ⊆ ℤ
119, 10sstri 3930 . . . . 5 ran 𝑂 ⊆ ℤ
12 nnz 12342 . . . . . . . 8 (𝐸 ∈ ℕ → 𝐸 ∈ ℤ)
1312adantl 482 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → 𝐸 ∈ ℤ)
14 ablgrp 19391 . . . . . . . . . . . 12 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
1514adantr 481 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → 𝐺 ∈ Grp)
161, 2, 3gexod 19191 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑂𝑥) ∥ 𝐸)
1715, 16sylan 580 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → (𝑂𝑥) ∥ 𝐸)
181, 3odcl 19144 . . . . . . . . . . . . 13 (𝑥𝑋 → (𝑂𝑥) ∈ ℕ0)
1918adantl 482 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → (𝑂𝑥) ∈ ℕ0)
2019nn0zd 12424 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → (𝑂𝑥) ∈ ℤ)
21 simplr 766 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → 𝐸 ∈ ℕ)
22 dvdsle 16019 . . . . . . . . . . 11 (((𝑂𝑥) ∈ ℤ ∧ 𝐸 ∈ ℕ) → ((𝑂𝑥) ∥ 𝐸 → (𝑂𝑥) ≤ 𝐸))
2320, 21, 22syl2anc 584 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → ((𝑂𝑥) ∥ 𝐸 → (𝑂𝑥) ≤ 𝐸))
2417, 23mpd 15 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → (𝑂𝑥) ≤ 𝐸)
2524ralrimiva 3103 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∀𝑥𝑋 (𝑂𝑥) ≤ 𝐸)
26 ffn 6600 . . . . . . . . . 10 (𝑂:𝑋⟶ℕ0𝑂 Fn 𝑋)
277, 26ax-mp 5 . . . . . . . . 9 𝑂 Fn 𝑋
28 breq1 5077 . . . . . . . . . 10 (𝑦 = (𝑂𝑥) → (𝑦𝐸 ↔ (𝑂𝑥) ≤ 𝐸))
2928ralrn 6964 . . . . . . . . 9 (𝑂 Fn 𝑋 → (∀𝑦 ∈ ran 𝑂 𝑦𝐸 ↔ ∀𝑥𝑋 (𝑂𝑥) ≤ 𝐸))
3027, 29ax-mp 5 . . . . . . . 8 (∀𝑦 ∈ ran 𝑂 𝑦𝐸 ↔ ∀𝑥𝑋 (𝑂𝑥) ≤ 𝐸)
3125, 30sylibr 233 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∀𝑦 ∈ ran 𝑂 𝑦𝐸)
32 brralrspcev 5134 . . . . . . 7 ((𝐸 ∈ ℤ ∧ ∀𝑦 ∈ ran 𝑂 𝑦𝐸) → ∃𝑛 ∈ ℤ ∀𝑦 ∈ ran 𝑂 𝑦𝑛)
3313, 31, 32syl2anc 584 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∃𝑛 ∈ ℤ ∀𝑦 ∈ ran 𝑂 𝑦𝑛)
3433ad2antrr 723 . . . . 5 ((((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) ∧ 𝑦𝑋) → ∃𝑛 ∈ ℤ ∀𝑦 ∈ ran 𝑂 𝑦𝑛)
3527a1i 11 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) → 𝑂 Fn 𝑋)
36 fnfvelrn 6958 . . . . . 6 ((𝑂 Fn 𝑋𝑦𝑋) → (𝑂𝑦) ∈ ran 𝑂)
3735, 36sylan 580 . . . . 5 ((((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) ∧ 𝑦𝑋) → (𝑂𝑦) ∈ ran 𝑂)
38 suprzub 12679 . . . . 5 ((ran 𝑂 ⊆ ℤ ∧ ∃𝑛 ∈ ℤ ∀𝑦 ∈ ran 𝑂 𝑦𝑛 ∧ (𝑂𝑦) ∈ ran 𝑂) → (𝑂𝑦) ≤ sup(ran 𝑂, ℝ, < ))
3911, 34, 37, 38mp3an2i 1465 . . . 4 ((((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) ∧ 𝑦𝑋) → (𝑂𝑦) ≤ sup(ran 𝑂, ℝ, < ))
40 simplrr 775 . . . 4 ((((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) ∧ 𝑦𝑋) → (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))
4139, 40breqtrrd 5102 . . 3 ((((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) ∧ 𝑦𝑋) → (𝑂𝑦) ≤ (𝑂𝑥))
421, 2, 3, 4, 5, 6, 41gexexlem 19453 . 2 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) → (𝑂𝑥) = 𝐸)
431grpbn0 18608 . . . . . 6 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
4415, 43syl 17 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → 𝑋 ≠ ∅)
457fdmi 6612 . . . . . . . 8 dom 𝑂 = 𝑋
4645eqeq1i 2743 . . . . . . 7 (dom 𝑂 = ∅ ↔ 𝑋 = ∅)
47 dm0rn0 5834 . . . . . . 7 (dom 𝑂 = ∅ ↔ ran 𝑂 = ∅)
4846, 47bitr3i 276 . . . . . 6 (𝑋 = ∅ ↔ ran 𝑂 = ∅)
4948necon3bii 2996 . . . . 5 (𝑋 ≠ ∅ ↔ ran 𝑂 ≠ ∅)
5044, 49sylib 217 . . . 4 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ran 𝑂 ≠ ∅)
51 suprzcl2 12678 . . . 4 ((ran 𝑂 ⊆ ℤ ∧ ran 𝑂 ≠ ∅ ∧ ∃𝑛 ∈ ℤ ∀𝑦 ∈ ran 𝑂 𝑦𝑛) → sup(ran 𝑂, ℝ, < ) ∈ ran 𝑂)
5211, 50, 33, 51mp3an2i 1465 . . 3 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → sup(ran 𝑂, ℝ, < ) ∈ ran 𝑂)
53 fvelrnb 6830 . . . 4 (𝑂 Fn 𝑋 → (sup(ran 𝑂, ℝ, < ) ∈ ran 𝑂 ↔ ∃𝑥𝑋 (𝑂𝑥) = sup(ran 𝑂, ℝ, < )))
5427, 53ax-mp 5 . . 3 (sup(ran 𝑂, ℝ, < ) ∈ ran 𝑂 ↔ ∃𝑥𝑋 (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))
5552, 54sylib 217 . 2 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∃𝑥𝑋 (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))
5642, 55reximddv 3204 1 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∃𝑥𝑋 (𝑂𝑥) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  wss 3887  c0 4256   class class class wbr 5074  dom cdm 5589  ran crn 5590   Fn wfn 6428  wf 6429  cfv 6433  supcsup 9199  cr 10870   < clt 11009  cle 11010  cn 11973  0cn0 12233  cz 12319  cdvds 15963  Basecbs 16912  Grpcgrp 18577  odcod 19132  gExcgex 19133  Abelcabl 19387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-od 19136  df-gex 19137  df-cmn 19388  df-abl 19389
This theorem is referenced by:  cyggexb  19500  pgpfaclem3  19686
  Copyright terms: Public domain W3C validator