MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexex Structured version   Visualization version   GIF version

Theorem gexex 19783
Description: In an abelian group with finite exponent, there is an element in the group with order equal to the exponent. In other words, all orders of elements divide the largest order of an element of the group. This fails if 𝐸 = 0, for example in an infinite p-group, where there are elements of arbitrarily large orders (so 𝐸 is zero) but no elements of infinite order. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexex.1 𝑋 = (Base‘𝐺)
gexex.2 𝐸 = (gEx‘𝐺)
gexex.3 𝑂 = (od‘𝐺)
Assertion
Ref Expression
gexex ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∃𝑥𝑋 (𝑂𝑥) = 𝐸)
Distinct variable groups:   𝑥,𝐸   𝑥,𝐺   𝑥,𝑂   𝑥,𝑋

Proof of Theorem gexex
Dummy variables 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gexex.1 . . 3 𝑋 = (Base‘𝐺)
2 gexex.2 . . 3 𝐸 = (gEx‘𝐺)
3 gexex.3 . . 3 𝑂 = (od‘𝐺)
4 simpll 766 . . 3 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) → 𝐺 ∈ Abel)
5 simplr 768 . . 3 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) → 𝐸 ∈ ℕ)
6 simprl 770 . . 3 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) → 𝑥𝑋)
71, 3odf 19467 . . . . . . 7 𝑂:𝑋⟶ℕ0
8 frn 6695 . . . . . . 7 (𝑂:𝑋⟶ℕ0 → ran 𝑂 ⊆ ℕ0)
97, 8ax-mp 5 . . . . . 6 ran 𝑂 ⊆ ℕ0
10 nn0ssz 12552 . . . . . 6 0 ⊆ ℤ
119, 10sstri 3956 . . . . 5 ran 𝑂 ⊆ ℤ
12 nnz 12550 . . . . . . . 8 (𝐸 ∈ ℕ → 𝐸 ∈ ℤ)
1312adantl 481 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → 𝐸 ∈ ℤ)
14 ablgrp 19715 . . . . . . . . . . . 12 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
1514adantr 480 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → 𝐺 ∈ Grp)
161, 2, 3gexod 19516 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑂𝑥) ∥ 𝐸)
1715, 16sylan 580 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → (𝑂𝑥) ∥ 𝐸)
181, 3odcl 19466 . . . . . . . . . . . . 13 (𝑥𝑋 → (𝑂𝑥) ∈ ℕ0)
1918adantl 481 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → (𝑂𝑥) ∈ ℕ0)
2019nn0zd 12555 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → (𝑂𝑥) ∈ ℤ)
21 simplr 768 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → 𝐸 ∈ ℕ)
22 dvdsle 16280 . . . . . . . . . . 11 (((𝑂𝑥) ∈ ℤ ∧ 𝐸 ∈ ℕ) → ((𝑂𝑥) ∥ 𝐸 → (𝑂𝑥) ≤ 𝐸))
2320, 21, 22syl2anc 584 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → ((𝑂𝑥) ∥ 𝐸 → (𝑂𝑥) ≤ 𝐸))
2417, 23mpd 15 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → (𝑂𝑥) ≤ 𝐸)
2524ralrimiva 3125 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∀𝑥𝑋 (𝑂𝑥) ≤ 𝐸)
26 ffn 6688 . . . . . . . . . 10 (𝑂:𝑋⟶ℕ0𝑂 Fn 𝑋)
277, 26ax-mp 5 . . . . . . . . 9 𝑂 Fn 𝑋
28 breq1 5110 . . . . . . . . . 10 (𝑦 = (𝑂𝑥) → (𝑦𝐸 ↔ (𝑂𝑥) ≤ 𝐸))
2928ralrn 7060 . . . . . . . . 9 (𝑂 Fn 𝑋 → (∀𝑦 ∈ ran 𝑂 𝑦𝐸 ↔ ∀𝑥𝑋 (𝑂𝑥) ≤ 𝐸))
3027, 29ax-mp 5 . . . . . . . 8 (∀𝑦 ∈ ran 𝑂 𝑦𝐸 ↔ ∀𝑥𝑋 (𝑂𝑥) ≤ 𝐸)
3125, 30sylibr 234 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∀𝑦 ∈ ran 𝑂 𝑦𝐸)
32 brralrspcev 5167 . . . . . . 7 ((𝐸 ∈ ℤ ∧ ∀𝑦 ∈ ran 𝑂 𝑦𝐸) → ∃𝑛 ∈ ℤ ∀𝑦 ∈ ran 𝑂 𝑦𝑛)
3313, 31, 32syl2anc 584 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∃𝑛 ∈ ℤ ∀𝑦 ∈ ran 𝑂 𝑦𝑛)
3433ad2antrr 726 . . . . 5 ((((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) ∧ 𝑦𝑋) → ∃𝑛 ∈ ℤ ∀𝑦 ∈ ran 𝑂 𝑦𝑛)
3527a1i 11 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) → 𝑂 Fn 𝑋)
36 fnfvelrn 7052 . . . . . 6 ((𝑂 Fn 𝑋𝑦𝑋) → (𝑂𝑦) ∈ ran 𝑂)
3735, 36sylan 580 . . . . 5 ((((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) ∧ 𝑦𝑋) → (𝑂𝑦) ∈ ran 𝑂)
38 suprzub 12898 . . . . 5 ((ran 𝑂 ⊆ ℤ ∧ ∃𝑛 ∈ ℤ ∀𝑦 ∈ ran 𝑂 𝑦𝑛 ∧ (𝑂𝑦) ∈ ran 𝑂) → (𝑂𝑦) ≤ sup(ran 𝑂, ℝ, < ))
3911, 34, 37, 38mp3an2i 1468 . . . 4 ((((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) ∧ 𝑦𝑋) → (𝑂𝑦) ≤ sup(ran 𝑂, ℝ, < ))
40 simplrr 777 . . . 4 ((((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) ∧ 𝑦𝑋) → (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))
4139, 40breqtrrd 5135 . . 3 ((((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) ∧ 𝑦𝑋) → (𝑂𝑦) ≤ (𝑂𝑥))
421, 2, 3, 4, 5, 6, 41gexexlem 19782 . 2 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) → (𝑂𝑥) = 𝐸)
431grpbn0 18898 . . . . . 6 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
4415, 43syl 17 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → 𝑋 ≠ ∅)
457fdmi 6699 . . . . . . . 8 dom 𝑂 = 𝑋
4645eqeq1i 2734 . . . . . . 7 (dom 𝑂 = ∅ ↔ 𝑋 = ∅)
47 dm0rn0 5888 . . . . . . 7 (dom 𝑂 = ∅ ↔ ran 𝑂 = ∅)
4846, 47bitr3i 277 . . . . . 6 (𝑋 = ∅ ↔ ran 𝑂 = ∅)
4948necon3bii 2977 . . . . 5 (𝑋 ≠ ∅ ↔ ran 𝑂 ≠ ∅)
5044, 49sylib 218 . . . 4 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ran 𝑂 ≠ ∅)
51 suprzcl2 12897 . . . 4 ((ran 𝑂 ⊆ ℤ ∧ ran 𝑂 ≠ ∅ ∧ ∃𝑛 ∈ ℤ ∀𝑦 ∈ ran 𝑂 𝑦𝑛) → sup(ran 𝑂, ℝ, < ) ∈ ran 𝑂)
5211, 50, 33, 51mp3an2i 1468 . . 3 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → sup(ran 𝑂, ℝ, < ) ∈ ran 𝑂)
53 fvelrnb 6921 . . . 4 (𝑂 Fn 𝑋 → (sup(ran 𝑂, ℝ, < ) ∈ ran 𝑂 ↔ ∃𝑥𝑋 (𝑂𝑥) = sup(ran 𝑂, ℝ, < )))
5427, 53ax-mp 5 . . 3 (sup(ran 𝑂, ℝ, < ) ∈ ran 𝑂 ↔ ∃𝑥𝑋 (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))
5552, 54sylib 218 . 2 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∃𝑥𝑋 (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))
5642, 55reximddv 3149 1 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∃𝑥𝑋 (𝑂𝑥) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3914  c0 4296   class class class wbr 5107  dom cdm 5638  ran crn 5639   Fn wfn 6506  wf 6507  cfv 6511  supcsup 9391  cr 11067   < clt 11208  cle 11209  cn 12186  0cn0 12442  cz 12529  cdvds 16222  Basecbs 17179  Grpcgrp 18865  odcod 19454  gExcgex 19455  Abelcabl 19711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-od 19458  df-gex 19459  df-cmn 19712  df-abl 19713
This theorem is referenced by:  cyggexb  19829  pgpfaclem3  20015
  Copyright terms: Public domain W3C validator