MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexex Structured version   Visualization version   GIF version

Theorem gexex 19895
Description: In an abelian group with finite exponent, there is an element in the group with order equal to the exponent. In other words, all orders of elements divide the largest order of an element of the group. This fails if 𝐸 = 0, for example in an infinite p-group, where there are elements of arbitrarily large orders (so 𝐸 is zero) but no elements of infinite order. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexex.1 𝑋 = (Base‘𝐺)
gexex.2 𝐸 = (gEx‘𝐺)
gexex.3 𝑂 = (od‘𝐺)
Assertion
Ref Expression
gexex ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∃𝑥𝑋 (𝑂𝑥) = 𝐸)
Distinct variable groups:   𝑥,𝐸   𝑥,𝐺   𝑥,𝑂   𝑥,𝑋

Proof of Theorem gexex
Dummy variables 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gexex.1 . . 3 𝑋 = (Base‘𝐺)
2 gexex.2 . . 3 𝐸 = (gEx‘𝐺)
3 gexex.3 . . 3 𝑂 = (od‘𝐺)
4 simpll 766 . . 3 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) → 𝐺 ∈ Abel)
5 simplr 768 . . 3 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) → 𝐸 ∈ ℕ)
6 simprl 770 . . 3 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) → 𝑥𝑋)
71, 3odf 19579 . . . . . . 7 𝑂:𝑋⟶ℕ0
8 frn 6754 . . . . . . 7 (𝑂:𝑋⟶ℕ0 → ran 𝑂 ⊆ ℕ0)
97, 8ax-mp 5 . . . . . 6 ran 𝑂 ⊆ ℕ0
10 nn0ssz 12662 . . . . . 6 0 ⊆ ℤ
119, 10sstri 4018 . . . . 5 ran 𝑂 ⊆ ℤ
12 nnz 12660 . . . . . . . 8 (𝐸 ∈ ℕ → 𝐸 ∈ ℤ)
1312adantl 481 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → 𝐸 ∈ ℤ)
14 ablgrp 19827 . . . . . . . . . . . 12 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
1514adantr 480 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → 𝐺 ∈ Grp)
161, 2, 3gexod 19628 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑂𝑥) ∥ 𝐸)
1715, 16sylan 579 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → (𝑂𝑥) ∥ 𝐸)
181, 3odcl 19578 . . . . . . . . . . . . 13 (𝑥𝑋 → (𝑂𝑥) ∈ ℕ0)
1918adantl 481 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → (𝑂𝑥) ∈ ℕ0)
2019nn0zd 12665 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → (𝑂𝑥) ∈ ℤ)
21 simplr 768 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → 𝐸 ∈ ℕ)
22 dvdsle 16358 . . . . . . . . . . 11 (((𝑂𝑥) ∈ ℤ ∧ 𝐸 ∈ ℕ) → ((𝑂𝑥) ∥ 𝐸 → (𝑂𝑥) ≤ 𝐸))
2320, 21, 22syl2anc 583 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → ((𝑂𝑥) ∥ 𝐸 → (𝑂𝑥) ≤ 𝐸))
2417, 23mpd 15 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → (𝑂𝑥) ≤ 𝐸)
2524ralrimiva 3152 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∀𝑥𝑋 (𝑂𝑥) ≤ 𝐸)
26 ffn 6747 . . . . . . . . . 10 (𝑂:𝑋⟶ℕ0𝑂 Fn 𝑋)
277, 26ax-mp 5 . . . . . . . . 9 𝑂 Fn 𝑋
28 breq1 5169 . . . . . . . . . 10 (𝑦 = (𝑂𝑥) → (𝑦𝐸 ↔ (𝑂𝑥) ≤ 𝐸))
2928ralrn 7122 . . . . . . . . 9 (𝑂 Fn 𝑋 → (∀𝑦 ∈ ran 𝑂 𝑦𝐸 ↔ ∀𝑥𝑋 (𝑂𝑥) ≤ 𝐸))
3027, 29ax-mp 5 . . . . . . . 8 (∀𝑦 ∈ ran 𝑂 𝑦𝐸 ↔ ∀𝑥𝑋 (𝑂𝑥) ≤ 𝐸)
3125, 30sylibr 234 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∀𝑦 ∈ ran 𝑂 𝑦𝐸)
32 brralrspcev 5226 . . . . . . 7 ((𝐸 ∈ ℤ ∧ ∀𝑦 ∈ ran 𝑂 𝑦𝐸) → ∃𝑛 ∈ ℤ ∀𝑦 ∈ ran 𝑂 𝑦𝑛)
3313, 31, 32syl2anc 583 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∃𝑛 ∈ ℤ ∀𝑦 ∈ ran 𝑂 𝑦𝑛)
3433ad2antrr 725 . . . . 5 ((((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) ∧ 𝑦𝑋) → ∃𝑛 ∈ ℤ ∀𝑦 ∈ ran 𝑂 𝑦𝑛)
3527a1i 11 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) → 𝑂 Fn 𝑋)
36 fnfvelrn 7114 . . . . . 6 ((𝑂 Fn 𝑋𝑦𝑋) → (𝑂𝑦) ∈ ran 𝑂)
3735, 36sylan 579 . . . . 5 ((((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) ∧ 𝑦𝑋) → (𝑂𝑦) ∈ ran 𝑂)
38 suprzub 13004 . . . . 5 ((ran 𝑂 ⊆ ℤ ∧ ∃𝑛 ∈ ℤ ∀𝑦 ∈ ran 𝑂 𝑦𝑛 ∧ (𝑂𝑦) ∈ ran 𝑂) → (𝑂𝑦) ≤ sup(ran 𝑂, ℝ, < ))
3911, 34, 37, 38mp3an2i 1466 . . . 4 ((((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) ∧ 𝑦𝑋) → (𝑂𝑦) ≤ sup(ran 𝑂, ℝ, < ))
40 simplrr 777 . . . 4 ((((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) ∧ 𝑦𝑋) → (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))
4139, 40breqtrrd 5194 . . 3 ((((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) ∧ 𝑦𝑋) → (𝑂𝑦) ≤ (𝑂𝑥))
421, 2, 3, 4, 5, 6, 41gexexlem 19894 . 2 (((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))) → (𝑂𝑥) = 𝐸)
431grpbn0 19006 . . . . . 6 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
4415, 43syl 17 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → 𝑋 ≠ ∅)
457fdmi 6758 . . . . . . . 8 dom 𝑂 = 𝑋
4645eqeq1i 2745 . . . . . . 7 (dom 𝑂 = ∅ ↔ 𝑋 = ∅)
47 dm0rn0 5949 . . . . . . 7 (dom 𝑂 = ∅ ↔ ran 𝑂 = ∅)
4846, 47bitr3i 277 . . . . . 6 (𝑋 = ∅ ↔ ran 𝑂 = ∅)
4948necon3bii 2999 . . . . 5 (𝑋 ≠ ∅ ↔ ran 𝑂 ≠ ∅)
5044, 49sylib 218 . . . 4 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ran 𝑂 ≠ ∅)
51 suprzcl2 13003 . . . 4 ((ran 𝑂 ⊆ ℤ ∧ ran 𝑂 ≠ ∅ ∧ ∃𝑛 ∈ ℤ ∀𝑦 ∈ ran 𝑂 𝑦𝑛) → sup(ran 𝑂, ℝ, < ) ∈ ran 𝑂)
5211, 50, 33, 51mp3an2i 1466 . . 3 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → sup(ran 𝑂, ℝ, < ) ∈ ran 𝑂)
53 fvelrnb 6982 . . . 4 (𝑂 Fn 𝑋 → (sup(ran 𝑂, ℝ, < ) ∈ ran 𝑂 ↔ ∃𝑥𝑋 (𝑂𝑥) = sup(ran 𝑂, ℝ, < )))
5427, 53ax-mp 5 . . 3 (sup(ran 𝑂, ℝ, < ) ∈ ran 𝑂 ↔ ∃𝑥𝑋 (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))
5552, 54sylib 218 . 2 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∃𝑥𝑋 (𝑂𝑥) = sup(ran 𝑂, ℝ, < ))
5642, 55reximddv 3177 1 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∃𝑥𝑋 (𝑂𝑥) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976  c0 4352   class class class wbr 5166  dom cdm 5700  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  supcsup 9509  cr 11183   < clt 11324  cle 11325  cn 12293  0cn0 12553  cz 12639  cdvds 16302  Basecbs 17258  Grpcgrp 18973  odcod 19566  gExcgex 19567  Abelcabl 19823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-od 19570  df-gex 19571  df-cmn 19824  df-abl 19825
This theorem is referenced by:  cyggexb  19941  pgpfaclem3  20127
  Copyright terms: Public domain W3C validator