Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upbdrech2 Structured version   Visualization version   GIF version

Theorem upbdrech2 45306
Description: Choice of an upper bound for a possibly empty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
upbdrech2.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
upbdrech2.bd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
upbdrech2.c 𝐶 = if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
Assertion
Ref Expression
upbdrech2 (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem upbdrech2
StepHypRef Expression
1 upbdrech2.c . . 3 𝐶 = if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
2 iftrue 4494 . . . . . 6 (𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) = 0)
3 0red 11177 . . . . . 6 (𝐴 = ∅ → 0 ∈ ℝ)
42, 3eqeltrd 2828 . . . . 5 (𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ)
54adantl 481 . . . 4 ((𝜑𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ)
6 simpr 484 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → ¬ 𝐴 = ∅)
76iffalsed 4499 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
86neqned 2932 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅)
9 upbdrech2.b . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
109adantlr 715 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
11 upbdrech2.bd . . . . . . . 8 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
1211adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
13 eqid 2729 . . . . . . 7 sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ) = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )
148, 10, 12, 13upbdrech 45303 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → (sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ ∧ ∀𝑥𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )))
1514simpld 494 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ)
167, 15eqeltrd 2828 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ)
175, 16pm2.61dan 812 . . 3 (𝜑 → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ)
181, 17eqeltrid 2832 . 2 (𝜑𝐶 ∈ ℝ)
19 rzal 4472 . . . 4 (𝐴 = ∅ → ∀𝑥𝐴 𝐵𝐶)
2019adantl 481 . . 3 ((𝜑𝐴 = ∅) → ∀𝑥𝐴 𝐵𝐶)
2114simprd 495 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑥𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
22 iffalse 4497 . . . . . . . 8 𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
231, 22eqtrid 2776 . . . . . . 7 𝐴 = ∅ → 𝐶 = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
2423breq2d 5119 . . . . . 6 𝐴 = ∅ → (𝐵𝐶𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )))
2524ralbidv 3156 . . . . 5 𝐴 = ∅ → (∀𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )))
2625adantl 481 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → (∀𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )))
2721, 26mpbird 257 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑥𝐴 𝐵𝐶)
2820, 27pm2.61dan 812 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
2918, 28jca 511 1 (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  c0 4296  ifcif 4488   class class class wbr 5107  supcsup 9391  cr 11067  0cc0 11068   < clt 11208  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408
This theorem is referenced by:  ssfiunibd  45307
  Copyright terms: Public domain W3C validator