| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upbdrech2 | Structured version Visualization version GIF version | ||
| Description: Choice of an upper bound for a possibly empty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| upbdrech2.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| upbdrech2.bd | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
| upbdrech2.c | ⊢ 𝐶 = if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) |
| Ref | Expression |
|---|---|
| upbdrech2 | ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upbdrech2.c | . . 3 ⊢ 𝐶 = if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) | |
| 2 | iftrue 4531 | . . . . . 6 ⊢ (𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) = 0) | |
| 3 | 0red 11264 | . . . . . 6 ⊢ (𝐴 = ∅ → 0 ∈ ℝ) | |
| 4 | 2, 3 | eqeltrd 2841 | . . . . 5 ⊢ (𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ) |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ) |
| 6 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ¬ 𝐴 = ∅) | |
| 7 | 6 | iffalsed 4536 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) = sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) |
| 8 | 6 | neqned 2947 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅) |
| 9 | upbdrech2.b | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 10 | 9 | adantlr 715 | . . . . . . 7 ⊢ (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 11 | upbdrech2.bd | . . . . . . . 8 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | |
| 12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
| 13 | eqid 2737 | . . . . . . 7 ⊢ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) = sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) | |
| 14 | 8, 10, 12, 13 | upbdrech 45317 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → (sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ))) |
| 15 | 14 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ) |
| 16 | 7, 15 | eqeltrd 2841 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ) |
| 17 | 5, 16 | pm2.61dan 813 | . . 3 ⊢ (𝜑 → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ) |
| 18 | 1, 17 | eqeltrid 2845 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 19 | rzal 4509 | . . . 4 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) | |
| 20 | 19 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) |
| 21 | 14 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑥 ∈ 𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) |
| 22 | iffalse 4534 | . . . . . . . 8 ⊢ (¬ 𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) = sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) | |
| 23 | 1, 22 | eqtrid 2789 | . . . . . . 7 ⊢ (¬ 𝐴 = ∅ → 𝐶 = sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) |
| 24 | 23 | breq2d 5155 | . . . . . 6 ⊢ (¬ 𝐴 = ∅ → (𝐵 ≤ 𝐶 ↔ 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ))) |
| 25 | 24 | ralbidv 3178 | . . . . 5 ⊢ (¬ 𝐴 = ∅ → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ))) |
| 26 | 25 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ))) |
| 27 | 21, 26 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) |
| 28 | 20, 27 | pm2.61dan 813 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) |
| 29 | 18, 28 | jca 511 | 1 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2714 ∀wral 3061 ∃wrex 3070 ∅c0 4333 ifcif 4525 class class class wbr 5143 supcsup 9480 ℝcr 11154 0cc0 11155 < clt 11295 ≤ cle 11296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 |
| This theorem is referenced by: ssfiunibd 45321 |
| Copyright terms: Public domain | W3C validator |