| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upbdrech2 | Structured version Visualization version GIF version | ||
| Description: Choice of an upper bound for a possibly empty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| upbdrech2.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| upbdrech2.bd | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
| upbdrech2.c | ⊢ 𝐶 = if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) |
| Ref | Expression |
|---|---|
| upbdrech2 | ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upbdrech2.c | . . 3 ⊢ 𝐶 = if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) | |
| 2 | iftrue 4506 | . . . . . 6 ⊢ (𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) = 0) | |
| 3 | 0red 11238 | . . . . . 6 ⊢ (𝐴 = ∅ → 0 ∈ ℝ) | |
| 4 | 2, 3 | eqeltrd 2834 | . . . . 5 ⊢ (𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ) |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ) |
| 6 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ¬ 𝐴 = ∅) | |
| 7 | 6 | iffalsed 4511 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) = sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) |
| 8 | 6 | neqned 2939 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅) |
| 9 | upbdrech2.b | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 10 | 9 | adantlr 715 | . . . . . . 7 ⊢ (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 11 | upbdrech2.bd | . . . . . . . 8 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | |
| 12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
| 13 | eqid 2735 | . . . . . . 7 ⊢ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) = sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) | |
| 14 | 8, 10, 12, 13 | upbdrech 45334 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → (sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ))) |
| 15 | 14 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ) |
| 16 | 7, 15 | eqeltrd 2834 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ) |
| 17 | 5, 16 | pm2.61dan 812 | . . 3 ⊢ (𝜑 → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ) |
| 18 | 1, 17 | eqeltrid 2838 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 19 | rzal 4484 | . . . 4 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) | |
| 20 | 19 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) |
| 21 | 14 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑥 ∈ 𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) |
| 22 | iffalse 4509 | . . . . . . . 8 ⊢ (¬ 𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) = sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) | |
| 23 | 1, 22 | eqtrid 2782 | . . . . . . 7 ⊢ (¬ 𝐴 = ∅ → 𝐶 = sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) |
| 24 | 23 | breq2d 5131 | . . . . . 6 ⊢ (¬ 𝐴 = ∅ → (𝐵 ≤ 𝐶 ↔ 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ))) |
| 25 | 24 | ralbidv 3163 | . . . . 5 ⊢ (¬ 𝐴 = ∅ → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ))) |
| 26 | 25 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ))) |
| 27 | 21, 26 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) |
| 28 | 20, 27 | pm2.61dan 812 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) |
| 29 | 18, 28 | jca 511 | 1 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 ∀wral 3051 ∃wrex 3060 ∅c0 4308 ifcif 4500 class class class wbr 5119 supcsup 9452 ℝcr 11128 0cc0 11129 < clt 11269 ≤ cle 11270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 |
| This theorem is referenced by: ssfiunibd 45338 |
| Copyright terms: Public domain | W3C validator |