![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > upbdrech2 | Structured version Visualization version GIF version |
Description: Choice of an upper bound for a possibly empty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
upbdrech2.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
upbdrech2.bd | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
upbdrech2.c | ⊢ 𝐶 = if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) |
Ref | Expression |
---|---|
upbdrech2 | ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upbdrech2.c | . . 3 ⊢ 𝐶 = if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) | |
2 | iftrue 4537 | . . . . . 6 ⊢ (𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) = 0) | |
3 | 0red 11262 | . . . . . 6 ⊢ (𝐴 = ∅ → 0 ∈ ℝ) | |
4 | 2, 3 | eqeltrd 2839 | . . . . 5 ⊢ (𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ) |
5 | 4 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ) |
6 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ¬ 𝐴 = ∅) | |
7 | 6 | iffalsed 4542 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) = sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) |
8 | 6 | neqned 2945 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅) |
9 | upbdrech2.b | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
10 | 9 | adantlr 715 | . . . . . . 7 ⊢ (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
11 | upbdrech2.bd | . . . . . . . 8 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | |
12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
13 | eqid 2735 | . . . . . . 7 ⊢ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) = sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) | |
14 | 8, 10, 12, 13 | upbdrech 45256 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → (sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ))) |
15 | 14 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ) |
16 | 7, 15 | eqeltrd 2839 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ) |
17 | 5, 16 | pm2.61dan 813 | . . 3 ⊢ (𝜑 → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ) |
18 | 1, 17 | eqeltrid 2843 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
19 | rzal 4515 | . . . 4 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) | |
20 | 19 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) |
21 | 14 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑥 ∈ 𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) |
22 | iffalse 4540 | . . . . . . . 8 ⊢ (¬ 𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) = sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) | |
23 | 1, 22 | eqtrid 2787 | . . . . . . 7 ⊢ (¬ 𝐴 = ∅ → 𝐶 = sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) |
24 | 23 | breq2d 5160 | . . . . . 6 ⊢ (¬ 𝐴 = ∅ → (𝐵 ≤ 𝐶 ↔ 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ))) |
25 | 24 | ralbidv 3176 | . . . . 5 ⊢ (¬ 𝐴 = ∅ → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ))) |
26 | 25 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ))) |
27 | 21, 26 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) |
28 | 20, 27 | pm2.61dan 813 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) |
29 | 18, 28 | jca 511 | 1 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ∀wral 3059 ∃wrex 3068 ∅c0 4339 ifcif 4531 class class class wbr 5148 supcsup 9478 ℝcr 11152 0cc0 11153 < clt 11293 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 |
This theorem is referenced by: ssfiunibd 45260 |
Copyright terms: Public domain | W3C validator |