Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upbdrech2 Structured version   Visualization version   GIF version

Theorem upbdrech2 42737
Description: Choice of an upper bound for a possibly empty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
upbdrech2.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
upbdrech2.bd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
upbdrech2.c 𝐶 = if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
Assertion
Ref Expression
upbdrech2 (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem upbdrech2
StepHypRef Expression
1 upbdrech2.c . . 3 𝐶 = if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
2 iftrue 4462 . . . . . 6 (𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) = 0)
3 0red 10909 . . . . . 6 (𝐴 = ∅ → 0 ∈ ℝ)
42, 3eqeltrd 2839 . . . . 5 (𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ)
54adantl 481 . . . 4 ((𝜑𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ)
6 simpr 484 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → ¬ 𝐴 = ∅)
76iffalsed 4467 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
86neqned 2949 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅)
9 upbdrech2.b . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
109adantlr 711 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
11 upbdrech2.bd . . . . . . . 8 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
1211adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
13 eqid 2738 . . . . . . 7 sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ) = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )
148, 10, 12, 13upbdrech 42734 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → (sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ ∧ ∀𝑥𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )))
1514simpld 494 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ)
167, 15eqeltrd 2839 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ)
175, 16pm2.61dan 809 . . 3 (𝜑 → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ)
181, 17eqeltrid 2843 . 2 (𝜑𝐶 ∈ ℝ)
19 rzal 4436 . . . 4 (𝐴 = ∅ → ∀𝑥𝐴 𝐵𝐶)
2019adantl 481 . . 3 ((𝜑𝐴 = ∅) → ∀𝑥𝐴 𝐵𝐶)
2114simprd 495 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑥𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
22 iffalse 4465 . . . . . . . 8 𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )) = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
231, 22syl5eq 2791 . . . . . . 7 𝐴 = ∅ → 𝐶 = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
2423breq2d 5082 . . . . . 6 𝐴 = ∅ → (𝐵𝐶𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )))
2524ralbidv 3120 . . . . 5 𝐴 = ∅ → (∀𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )))
2625adantl 481 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → (∀𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )))
2721, 26mpbird 256 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑥𝐴 𝐵𝐶)
2820, 27pm2.61dan 809 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
2918, 28jca 511 1 (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  c0 4253  ifcif 4456   class class class wbr 5070  supcsup 9129  cr 10801  0cc0 10802   < clt 10940  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138
This theorem is referenced by:  ssfiunibd  42738
  Copyright terms: Public domain W3C validator