![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > upbdrech2 | Structured version Visualization version GIF version |
Description: Choice of an upper bound for a possibly empty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
upbdrech2.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
upbdrech2.bd | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
upbdrech2.c | ⊢ 𝐶 = if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) |
Ref | Expression |
---|---|
upbdrech2 | ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upbdrech2.c | . . 3 ⊢ 𝐶 = if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) | |
2 | iftrue 4535 | . . . . . 6 ⊢ (𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) = 0) | |
3 | 0red 11222 | . . . . . 6 ⊢ (𝐴 = ∅ → 0 ∈ ℝ) | |
4 | 2, 3 | eqeltrd 2832 | . . . . 5 ⊢ (𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ) |
5 | 4 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ) |
6 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ¬ 𝐴 = ∅) | |
7 | 6 | iffalsed 4540 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) = sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) |
8 | 6 | neqned 2946 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅) |
9 | upbdrech2.b | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
10 | 9 | adantlr 712 | . . . . . . 7 ⊢ (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
11 | upbdrech2.bd | . . . . . . . 8 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | |
12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
13 | eqid 2731 | . . . . . . 7 ⊢ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) = sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) | |
14 | 8, 10, 12, 13 | upbdrech 44315 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → (sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ))) |
15 | 14 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ) |
16 | 7, 15 | eqeltrd 2832 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ) |
17 | 5, 16 | pm2.61dan 810 | . . 3 ⊢ (𝜑 → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) ∈ ℝ) |
18 | 1, 17 | eqeltrid 2836 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
19 | rzal 4509 | . . . 4 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) | |
20 | 19 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) |
21 | 14 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑥 ∈ 𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) |
22 | iffalse 4538 | . . . . . . . 8 ⊢ (¬ 𝐴 = ∅ → if(𝐴 = ∅, 0, sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) = sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) | |
23 | 1, 22 | eqtrid 2783 | . . . . . . 7 ⊢ (¬ 𝐴 = ∅ → 𝐶 = sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) |
24 | 23 | breq2d 5161 | . . . . . 6 ⊢ (¬ 𝐴 = ∅ → (𝐵 ≤ 𝐶 ↔ 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ))) |
25 | 24 | ralbidv 3176 | . . . . 5 ⊢ (¬ 𝐴 = ∅ → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ))) |
26 | 25 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ))) |
27 | 21, 26 | mpbird 256 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) |
28 | 20, 27 | pm2.61dan 810 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) |
29 | 18, 28 | jca 511 | 1 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {cab 2708 ∀wral 3060 ∃wrex 3069 ∅c0 4323 ifcif 4529 class class class wbr 5149 supcsup 9438 ℝcr 11112 0cc0 11113 < clt 11253 ≤ cle 11254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-sup 9440 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 |
This theorem is referenced by: ssfiunibd 44319 |
Copyright terms: Public domain | W3C validator |