MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem12 Structured version   Visualization version   GIF version

Theorem axcontlem12 27246
Description: Lemma for axcont 27247. Eliminate the trivial cases from the previous lemmas. (Contributed by Scott Fenton, 20-Jun-2013.)
Assertion
Ref Expression
axcontlem12 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
Distinct variable groups:   𝐴,𝑏,𝑥   𝐵,𝑏,𝑥,𝑦   𝑁,𝑏,𝑥,𝑦   𝑍,𝑏,𝑥,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem axcontlem12
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 rzal 4436 . . . . . . . . 9 (𝐵 = ∅ → ∀𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩)
21ralrimivw 3108 . . . . . . . 8 (𝐵 = ∅ → ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩)
3 breq1 5073 . . . . . . . . . . 11 (𝑏 = 𝑍 → (𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑍 Btwn ⟨𝑥, 𝑦⟩))
432ralbidv 3122 . . . . . . . . . 10 (𝑏 = 𝑍 → (∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩))
54rspcev 3552 . . . . . . . . 9 ((𝑍 ∈ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
65expcom 413 . . . . . . . 8 (∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩ → (𝑍 ∈ (𝔼‘𝑁) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
72, 6syl 17 . . . . . . 7 (𝐵 = ∅ → (𝑍 ∈ (𝔼‘𝑁) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
87adantld 490 . . . . . 6 (𝐵 = ∅ → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
98adantld 490 . . . . 5 (𝐵 = ∅ → (((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
10 simprrl 777 . . . . . . 7 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)))
11 simprrr 778 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → 𝑍 ∈ (𝔼‘𝑁))
12 simprll 775 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → 𝑢𝐴)
13 simpl 482 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → 𝐵 ≠ ∅)
1411, 12, 133jca 1126 . . . . . . 7 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑢𝐴𝐵 ≠ ∅))
15 simprlr 776 . . . . . . 7 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → 𝑍𝑢)
16 axcontlem11 27245 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑢𝐴𝐵 ≠ ∅) ∧ 𝑍𝑢)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
1710, 14, 15, 16syl12anc 833 . . . . . 6 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
1817ex 412 . . . . 5 (𝐵 ≠ ∅ → (((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
199, 18pm2.61ine 3027 . . . 4 (((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
2019ex 412 . . 3 ((𝑢𝐴𝑍𝑢) → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
2120rexlimiva 3209 . 2 (∃𝑢𝐴 𝑍𝑢 → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
22 df-ne 2943 . . . . . 6 (𝑍𝑢 ↔ ¬ 𝑍 = 𝑢)
2322con2bii 357 . . . . 5 (𝑍 = 𝑢 ↔ ¬ 𝑍𝑢)
2423ralbii 3090 . . . 4 (∀𝑢𝐴 𝑍 = 𝑢 ↔ ∀𝑢𝐴 ¬ 𝑍𝑢)
25 ralnex 3163 . . . 4 (∀𝑢𝐴 ¬ 𝑍𝑢 ↔ ¬ ∃𝑢𝐴 𝑍𝑢)
2624, 25bitri 274 . . 3 (∀𝑢𝐴 𝑍 = 𝑢 ↔ ¬ ∃𝑢𝐴 𝑍𝑢)
27 simpr3 1194 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) → ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)
28 eqeq2 2750 . . . . . . . . . . 11 (𝑢 = 𝑥 → (𝑍 = 𝑢𝑍 = 𝑥))
2928rspccva 3551 . . . . . . . . . 10 ((∀𝑢𝐴 𝑍 = 𝑢𝑥𝐴) → 𝑍 = 𝑥)
30 opeq1 4801 . . . . . . . . . . . . 13 (𝑍 = 𝑥 → ⟨𝑍, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
3130breq2d 5082 . . . . . . . . . . . 12 (𝑍 = 𝑥 → (𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ 𝑥 Btwn ⟨𝑥, 𝑦⟩))
32 breq1 5073 . . . . . . . . . . . 12 (𝑍 = 𝑥 → (𝑍 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑥 Btwn ⟨𝑥, 𝑦⟩))
3331, 32bitr4d 281 . . . . . . . . . . 11 (𝑍 = 𝑥 → (𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ 𝑍 Btwn ⟨𝑥, 𝑦⟩))
3433ralbidv 3120 . . . . . . . . . 10 (𝑍 = 𝑥 → (∀𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ ∀𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩))
3529, 34syl 17 . . . . . . . . 9 ((∀𝑢𝐴 𝑍 = 𝑢𝑥𝐴) → (∀𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ ∀𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩))
3635ralbidva 3119 . . . . . . . 8 (∀𝑢𝐴 𝑍 = 𝑢 → (∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩))
3736biimpa 476 . . . . . . 7 ((∀𝑢𝐴 𝑍 = 𝑢 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩) → ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩)
3827, 37sylan2 592 . . . . . 6 ((∀𝑢𝐴 𝑍 = 𝑢 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩))) → ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩)
3938, 5sylan2 592 . . . . 5 ((𝑍 ∈ (𝔼‘𝑁) ∧ (∀𝑢𝐴 𝑍 = 𝑢 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
4039ancoms 458 . . . 4 (((∀𝑢𝐴 𝑍 = 𝑢 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩))) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
4140expl 457 . . 3 (∀𝑢𝐴 𝑍 = 𝑢 → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
4226, 41sylbir 234 . 2 (¬ ∃𝑢𝐴 𝑍𝑢 → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
4321, 42pm2.61i 182 1 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  wss 3883  c0 4253  cop 4564   class class class wbr 5070  cfv 6418  cn 11903  𝔼cee 27159   Btwn cbtwn 27160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-z 12250  df-uz 12512  df-ico 13014  df-icc 13015  df-fz 13169  df-ee 27162  df-btwn 27163
This theorem is referenced by:  axcont  27247
  Copyright terms: Public domain W3C validator