MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem12 Structured version   Visualization version   GIF version

Theorem axcontlem12 27698
Description: Lemma for axcont 27699. Eliminate the trivial cases from the previous lemmas. (Contributed by Scott Fenton, 20-Jun-2013.)
Assertion
Ref Expression
axcontlem12 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
Distinct variable groups:   𝐴,𝑏,𝑥   𝐵,𝑏,𝑥,𝑦   𝑁,𝑏,𝑥,𝑦   𝑍,𝑏,𝑥,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem axcontlem12
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 rzal 4461 . . . . . . . . 9 (𝐵 = ∅ → ∀𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩)
21ralrimivw 3145 . . . . . . . 8 (𝐵 = ∅ → ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩)
3 breq1 5103 . . . . . . . . . . 11 (𝑏 = 𝑍 → (𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑍 Btwn ⟨𝑥, 𝑦⟩))
432ralbidv 3210 . . . . . . . . . 10 (𝑏 = 𝑍 → (∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩))
54rspcev 3576 . . . . . . . . 9 ((𝑍 ∈ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
65expcom 415 . . . . . . . 8 (∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩ → (𝑍 ∈ (𝔼‘𝑁) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
72, 6syl 17 . . . . . . 7 (𝐵 = ∅ → (𝑍 ∈ (𝔼‘𝑁) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
87adantld 492 . . . . . 6 (𝐵 = ∅ → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
98adantld 492 . . . . 5 (𝐵 = ∅ → (((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
10 simprrl 779 . . . . . . 7 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)))
11 simprrr 780 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → 𝑍 ∈ (𝔼‘𝑁))
12 simprll 777 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → 𝑢𝐴)
13 simpl 484 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → 𝐵 ≠ ∅)
1411, 12, 133jca 1128 . . . . . . 7 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑢𝐴𝐵 ≠ ∅))
15 simprlr 778 . . . . . . 7 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → 𝑍𝑢)
16 axcontlem11 27697 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑢𝐴𝐵 ≠ ∅) ∧ 𝑍𝑢)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
1710, 14, 15, 16syl12anc 835 . . . . . 6 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
1817ex 414 . . . . 5 (𝐵 ≠ ∅ → (((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
199, 18pm2.61ine 3026 . . . 4 (((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
2019ex 414 . . 3 ((𝑢𝐴𝑍𝑢) → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
2120rexlimiva 3142 . 2 (∃𝑢𝐴 𝑍𝑢 → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
22 df-ne 2942 . . . . . 6 (𝑍𝑢 ↔ ¬ 𝑍 = 𝑢)
2322con2bii 358 . . . . 5 (𝑍 = 𝑢 ↔ ¬ 𝑍𝑢)
2423ralbii 3094 . . . 4 (∀𝑢𝐴 𝑍 = 𝑢 ↔ ∀𝑢𝐴 ¬ 𝑍𝑢)
25 ralnex 3073 . . . 4 (∀𝑢𝐴 ¬ 𝑍𝑢 ↔ ¬ ∃𝑢𝐴 𝑍𝑢)
2624, 25bitri 275 . . 3 (∀𝑢𝐴 𝑍 = 𝑢 ↔ ¬ ∃𝑢𝐴 𝑍𝑢)
27 simpr3 1196 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) → ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)
28 eqeq2 2749 . . . . . . . . . . 11 (𝑢 = 𝑥 → (𝑍 = 𝑢𝑍 = 𝑥))
2928rspccva 3575 . . . . . . . . . 10 ((∀𝑢𝐴 𝑍 = 𝑢𝑥𝐴) → 𝑍 = 𝑥)
30 opeq1 4825 . . . . . . . . . . . . 13 (𝑍 = 𝑥 → ⟨𝑍, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
3130breq2d 5112 . . . . . . . . . . . 12 (𝑍 = 𝑥 → (𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ 𝑥 Btwn ⟨𝑥, 𝑦⟩))
32 breq1 5103 . . . . . . . . . . . 12 (𝑍 = 𝑥 → (𝑍 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑥 Btwn ⟨𝑥, 𝑦⟩))
3331, 32bitr4d 282 . . . . . . . . . . 11 (𝑍 = 𝑥 → (𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ 𝑍 Btwn ⟨𝑥, 𝑦⟩))
3433ralbidv 3172 . . . . . . . . . 10 (𝑍 = 𝑥 → (∀𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ ∀𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩))
3529, 34syl 17 . . . . . . . . 9 ((∀𝑢𝐴 𝑍 = 𝑢𝑥𝐴) → (∀𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ ∀𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩))
3635ralbidva 3170 . . . . . . . 8 (∀𝑢𝐴 𝑍 = 𝑢 → (∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩))
3736biimpa 478 . . . . . . 7 ((∀𝑢𝐴 𝑍 = 𝑢 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩) → ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩)
3827, 37sylan2 594 . . . . . 6 ((∀𝑢𝐴 𝑍 = 𝑢 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩))) → ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩)
3938, 5sylan2 594 . . . . 5 ((𝑍 ∈ (𝔼‘𝑁) ∧ (∀𝑢𝐴 𝑍 = 𝑢 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
4039ancoms 460 . . . 4 (((∀𝑢𝐴 𝑍 = 𝑢 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩))) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
4140expl 459 . . 3 (∀𝑢𝐴 𝑍 = 𝑢 → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
4226, 41sylbir 234 . 2 (¬ ∃𝑢𝐴 𝑍𝑢 → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
4321, 42pm2.61i 182 1 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1087   = wceq 1541  wcel 2106  wne 2941  wral 3062  wrex 3071  wss 3905  c0 4277  cop 4587   class class class wbr 5100  cfv 6488  cn 12083  𝔼cee 27611   Btwn cbtwn 27612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058  ax-pre-sup 11059
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-1st 7908  df-2nd 7909  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-er 8578  df-map 8697  df-en 8814  df-dom 8815  df-sdom 8816  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-div 11743  df-nn 12084  df-z 12430  df-uz 12693  df-ico 13195  df-icc 13196  df-fz 13350  df-ee 27614  df-btwn 27615
This theorem is referenced by:  axcont  27699
  Copyright terms: Public domain W3C validator