MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem12 Structured version   Visualization version   GIF version

Theorem axcontlem12 28222
Description: Lemma for axcont 28223. Eliminate the trivial cases from the previous lemmas. (Contributed by Scott Fenton, 20-Jun-2013.)
Assertion
Ref Expression
axcontlem12 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
Distinct variable groups:   𝐴,𝑏,𝑥   𝐵,𝑏,𝑥,𝑦   𝑁,𝑏,𝑥,𝑦   𝑍,𝑏,𝑥,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem axcontlem12
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 rzal 4507 . . . . . . . . 9 (𝐵 = ∅ → ∀𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩)
21ralrimivw 3150 . . . . . . . 8 (𝐵 = ∅ → ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩)
3 breq1 5150 . . . . . . . . . . 11 (𝑏 = 𝑍 → (𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑍 Btwn ⟨𝑥, 𝑦⟩))
432ralbidv 3218 . . . . . . . . . 10 (𝑏 = 𝑍 → (∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩))
54rspcev 3612 . . . . . . . . 9 ((𝑍 ∈ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
65expcom 414 . . . . . . . 8 (∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩ → (𝑍 ∈ (𝔼‘𝑁) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
72, 6syl 17 . . . . . . 7 (𝐵 = ∅ → (𝑍 ∈ (𝔼‘𝑁) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
87adantld 491 . . . . . 6 (𝐵 = ∅ → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
98adantld 491 . . . . 5 (𝐵 = ∅ → (((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
10 simprrl 779 . . . . . . 7 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)))
11 simprrr 780 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → 𝑍 ∈ (𝔼‘𝑁))
12 simprll 777 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → 𝑢𝐴)
13 simpl 483 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → 𝐵 ≠ ∅)
1411, 12, 133jca 1128 . . . . . . 7 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑢𝐴𝐵 ≠ ∅))
15 simprlr 778 . . . . . . 7 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → 𝑍𝑢)
16 axcontlem11 28221 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑢𝐴𝐵 ≠ ∅) ∧ 𝑍𝑢)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
1710, 14, 15, 16syl12anc 835 . . . . . 6 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
1817ex 413 . . . . 5 (𝐵 ≠ ∅ → (((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
199, 18pm2.61ine 3025 . . . 4 (((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
2019ex 413 . . 3 ((𝑢𝐴𝑍𝑢) → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
2120rexlimiva 3147 . 2 (∃𝑢𝐴 𝑍𝑢 → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
22 df-ne 2941 . . . . . 6 (𝑍𝑢 ↔ ¬ 𝑍 = 𝑢)
2322con2bii 357 . . . . 5 (𝑍 = 𝑢 ↔ ¬ 𝑍𝑢)
2423ralbii 3093 . . . 4 (∀𝑢𝐴 𝑍 = 𝑢 ↔ ∀𝑢𝐴 ¬ 𝑍𝑢)
25 ralnex 3072 . . . 4 (∀𝑢𝐴 ¬ 𝑍𝑢 ↔ ¬ ∃𝑢𝐴 𝑍𝑢)
2624, 25bitri 274 . . 3 (∀𝑢𝐴 𝑍 = 𝑢 ↔ ¬ ∃𝑢𝐴 𝑍𝑢)
27 simpr3 1196 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) → ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)
28 eqeq2 2744 . . . . . . . . . . 11 (𝑢 = 𝑥 → (𝑍 = 𝑢𝑍 = 𝑥))
2928rspccva 3611 . . . . . . . . . 10 ((∀𝑢𝐴 𝑍 = 𝑢𝑥𝐴) → 𝑍 = 𝑥)
30 opeq1 4872 . . . . . . . . . . . . 13 (𝑍 = 𝑥 → ⟨𝑍, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
3130breq2d 5159 . . . . . . . . . . . 12 (𝑍 = 𝑥 → (𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ 𝑥 Btwn ⟨𝑥, 𝑦⟩))
32 breq1 5150 . . . . . . . . . . . 12 (𝑍 = 𝑥 → (𝑍 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑥 Btwn ⟨𝑥, 𝑦⟩))
3331, 32bitr4d 281 . . . . . . . . . . 11 (𝑍 = 𝑥 → (𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ 𝑍 Btwn ⟨𝑥, 𝑦⟩))
3433ralbidv 3177 . . . . . . . . . 10 (𝑍 = 𝑥 → (∀𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ ∀𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩))
3529, 34syl 17 . . . . . . . . 9 ((∀𝑢𝐴 𝑍 = 𝑢𝑥𝐴) → (∀𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ ∀𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩))
3635ralbidva 3175 . . . . . . . 8 (∀𝑢𝐴 𝑍 = 𝑢 → (∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩))
3736biimpa 477 . . . . . . 7 ((∀𝑢𝐴 𝑍 = 𝑢 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩) → ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩)
3827, 37sylan2 593 . . . . . 6 ((∀𝑢𝐴 𝑍 = 𝑢 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩))) → ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩)
3938, 5sylan2 593 . . . . 5 ((𝑍 ∈ (𝔼‘𝑁) ∧ (∀𝑢𝐴 𝑍 = 𝑢 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
4039ancoms 459 . . . 4 (((∀𝑢𝐴 𝑍 = 𝑢 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩))) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
4140expl 458 . . 3 (∀𝑢𝐴 𝑍 = 𝑢 → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
4226, 41sylbir 234 . 2 (¬ ∃𝑢𝐴 𝑍𝑢 → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
4321, 42pm2.61i 182 1 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  wss 3947  c0 4321  cop 4633   class class class wbr 5147  cfv 6540  cn 12208  𝔼cee 28135   Btwn cbtwn 28136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-z 12555  df-uz 12819  df-ico 13326  df-icc 13327  df-fz 13481  df-ee 28138  df-btwn 28139
This theorem is referenced by:  axcont  28223
  Copyright terms: Public domain W3C validator