MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem12 Structured version   Visualization version   GIF version

Theorem axcontlem12 27066
Description: Lemma for axcont 27067. Eliminate the trivial cases from the previous lemmas. (Contributed by Scott Fenton, 20-Jun-2013.)
Assertion
Ref Expression
axcontlem12 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
Distinct variable groups:   𝐴,𝑏,𝑥   𝐵,𝑏,𝑥,𝑦   𝑁,𝑏,𝑥,𝑦   𝑍,𝑏,𝑥,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem axcontlem12
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 rzal 4420 . . . . . . . . 9 (𝐵 = ∅ → ∀𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩)
21ralrimivw 3106 . . . . . . . 8 (𝐵 = ∅ → ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩)
3 breq1 5056 . . . . . . . . . . 11 (𝑏 = 𝑍 → (𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑍 Btwn ⟨𝑥, 𝑦⟩))
432ralbidv 3120 . . . . . . . . . 10 (𝑏 = 𝑍 → (∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩))
54rspcev 3537 . . . . . . . . 9 ((𝑍 ∈ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
65expcom 417 . . . . . . . 8 (∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩ → (𝑍 ∈ (𝔼‘𝑁) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
72, 6syl 17 . . . . . . 7 (𝐵 = ∅ → (𝑍 ∈ (𝔼‘𝑁) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
87adantld 494 . . . . . 6 (𝐵 = ∅ → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
98adantld 494 . . . . 5 (𝐵 = ∅ → (((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
10 simprrl 781 . . . . . . 7 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)))
11 simprrr 782 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → 𝑍 ∈ (𝔼‘𝑁))
12 simprll 779 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → 𝑢𝐴)
13 simpl 486 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → 𝐵 ≠ ∅)
1411, 12, 133jca 1130 . . . . . . 7 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑢𝐴𝐵 ≠ ∅))
15 simprlr 780 . . . . . . 7 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → 𝑍𝑢)
16 axcontlem11 27065 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑢𝐴𝐵 ≠ ∅) ∧ 𝑍𝑢)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
1710, 14, 15, 16syl12anc 837 . . . . . 6 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
1817ex 416 . . . . 5 (𝐵 ≠ ∅ → (((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
199, 18pm2.61ine 3025 . . . 4 (((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
2019ex 416 . . 3 ((𝑢𝐴𝑍𝑢) → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
2120rexlimiva 3200 . 2 (∃𝑢𝐴 𝑍𝑢 → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
22 df-ne 2941 . . . . . 6 (𝑍𝑢 ↔ ¬ 𝑍 = 𝑢)
2322con2bii 361 . . . . 5 (𝑍 = 𝑢 ↔ ¬ 𝑍𝑢)
2423ralbii 3088 . . . 4 (∀𝑢𝐴 𝑍 = 𝑢 ↔ ∀𝑢𝐴 ¬ 𝑍𝑢)
25 ralnex 3158 . . . 4 (∀𝑢𝐴 ¬ 𝑍𝑢 ↔ ¬ ∃𝑢𝐴 𝑍𝑢)
2624, 25bitri 278 . . 3 (∀𝑢𝐴 𝑍 = 𝑢 ↔ ¬ ∃𝑢𝐴 𝑍𝑢)
27 simpr3 1198 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) → ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)
28 eqeq2 2749 . . . . . . . . . . 11 (𝑢 = 𝑥 → (𝑍 = 𝑢𝑍 = 𝑥))
2928rspccva 3536 . . . . . . . . . 10 ((∀𝑢𝐴 𝑍 = 𝑢𝑥𝐴) → 𝑍 = 𝑥)
30 opeq1 4784 . . . . . . . . . . . . 13 (𝑍 = 𝑥 → ⟨𝑍, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
3130breq2d 5065 . . . . . . . . . . . 12 (𝑍 = 𝑥 → (𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ 𝑥 Btwn ⟨𝑥, 𝑦⟩))
32 breq1 5056 . . . . . . . . . . . 12 (𝑍 = 𝑥 → (𝑍 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑥 Btwn ⟨𝑥, 𝑦⟩))
3331, 32bitr4d 285 . . . . . . . . . . 11 (𝑍 = 𝑥 → (𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ 𝑍 Btwn ⟨𝑥, 𝑦⟩))
3433ralbidv 3118 . . . . . . . . . 10 (𝑍 = 𝑥 → (∀𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ ∀𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩))
3529, 34syl 17 . . . . . . . . 9 ((∀𝑢𝐴 𝑍 = 𝑢𝑥𝐴) → (∀𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ ∀𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩))
3635ralbidva 3117 . . . . . . . 8 (∀𝑢𝐴 𝑍 = 𝑢 → (∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩))
3736biimpa 480 . . . . . . 7 ((∀𝑢𝐴 𝑍 = 𝑢 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩) → ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩)
3827, 37sylan2 596 . . . . . 6 ((∀𝑢𝐴 𝑍 = 𝑢 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩))) → ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩)
3938, 5sylan2 596 . . . . 5 ((𝑍 ∈ (𝔼‘𝑁) ∧ (∀𝑢𝐴 𝑍 = 𝑢 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
4039ancoms 462 . . . 4 (((∀𝑢𝐴 𝑍 = 𝑢 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩))) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
4140expl 461 . . 3 (∀𝑢𝐴 𝑍 = 𝑢 → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
4226, 41sylbir 238 . 2 (¬ ∃𝑢𝐴 𝑍𝑢 → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
4321, 42pm2.61i 185 1 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  wss 3866  c0 4237  cop 4547   class class class wbr 5053  cfv 6380  cn 11830  𝔼cee 26979   Btwn cbtwn 26980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-z 12177  df-uz 12439  df-ico 12941  df-icc 12942  df-fz 13096  df-ee 26982  df-btwn 26983
This theorem is referenced by:  axcont  27067
  Copyright terms: Public domain W3C validator