MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem12 Structured version   Visualization version   GIF version

Theorem axcontlem12 28955
Description: Lemma for axcont 28956. Eliminate the trivial cases from the previous lemmas. (Contributed by Scott Fenton, 20-Jun-2013.)
Assertion
Ref Expression
axcontlem12 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
Distinct variable groups:   𝐴,𝑏,𝑥   𝐵,𝑏,𝑥,𝑦   𝑁,𝑏,𝑥,𝑦   𝑍,𝑏,𝑥,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem axcontlem12
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 rzal 4458 . . . . . . . . 9 (𝐵 = ∅ → ∀𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩)
21ralrimivw 3129 . . . . . . . 8 (𝐵 = ∅ → ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩)
3 breq1 5096 . . . . . . . . . . 11 (𝑏 = 𝑍 → (𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑍 Btwn ⟨𝑥, 𝑦⟩))
432ralbidv 3197 . . . . . . . . . 10 (𝑏 = 𝑍 → (∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩ ↔ ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩))
54rspcev 3573 . . . . . . . . 9 ((𝑍 ∈ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
65expcom 413 . . . . . . . 8 (∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩ → (𝑍 ∈ (𝔼‘𝑁) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
72, 6syl 17 . . . . . . 7 (𝐵 = ∅ → (𝑍 ∈ (𝔼‘𝑁) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
87adantld 490 . . . . . 6 (𝐵 = ∅ → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
98adantld 490 . . . . 5 (𝐵 = ∅ → (((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
10 simprrl 780 . . . . . . 7 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)))
11 simprrr 781 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → 𝑍 ∈ (𝔼‘𝑁))
12 simprll 778 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → 𝑢𝐴)
13 simpl 482 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → 𝐵 ≠ ∅)
1411, 12, 133jca 1128 . . . . . . 7 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑢𝐴𝐵 ≠ ∅))
15 simprlr 779 . . . . . . 7 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → 𝑍𝑢)
16 axcontlem11 28954 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑢𝐴𝐵 ≠ ∅) ∧ 𝑍𝑢)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
1710, 14, 15, 16syl12anc 836 . . . . . 6 ((𝐵 ≠ ∅ ∧ ((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
1817ex 412 . . . . 5 (𝐵 ≠ ∅ → (((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
199, 18pm2.61ine 3012 . . . 4 (((𝑢𝐴𝑍𝑢) ∧ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
2019ex 412 . . 3 ((𝑢𝐴𝑍𝑢) → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
2120rexlimiva 3126 . 2 (∃𝑢𝐴 𝑍𝑢 → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
22 df-ne 2930 . . . . . 6 (𝑍𝑢 ↔ ¬ 𝑍 = 𝑢)
2322con2bii 357 . . . . 5 (𝑍 = 𝑢 ↔ ¬ 𝑍𝑢)
2423ralbii 3079 . . . 4 (∀𝑢𝐴 𝑍 = 𝑢 ↔ ∀𝑢𝐴 ¬ 𝑍𝑢)
25 ralnex 3059 . . . 4 (∀𝑢𝐴 ¬ 𝑍𝑢 ↔ ¬ ∃𝑢𝐴 𝑍𝑢)
2624, 25bitri 275 . . 3 (∀𝑢𝐴 𝑍 = 𝑢 ↔ ¬ ∃𝑢𝐴 𝑍𝑢)
27 simpr3 1197 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) → ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)
28 eqeq2 2745 . . . . . . . . . . 11 (𝑢 = 𝑥 → (𝑍 = 𝑢𝑍 = 𝑥))
2928rspccva 3572 . . . . . . . . . 10 ((∀𝑢𝐴 𝑍 = 𝑢𝑥𝐴) → 𝑍 = 𝑥)
30 opeq1 4824 . . . . . . . . . . . . 13 (𝑍 = 𝑥 → ⟨𝑍, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
3130breq2d 5105 . . . . . . . . . . . 12 (𝑍 = 𝑥 → (𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ 𝑥 Btwn ⟨𝑥, 𝑦⟩))
32 breq1 5096 . . . . . . . . . . . 12 (𝑍 = 𝑥 → (𝑍 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑥 Btwn ⟨𝑥, 𝑦⟩))
3331, 32bitr4d 282 . . . . . . . . . . 11 (𝑍 = 𝑥 → (𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ 𝑍 Btwn ⟨𝑥, 𝑦⟩))
3433ralbidv 3156 . . . . . . . . . 10 (𝑍 = 𝑥 → (∀𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ ∀𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩))
3529, 34syl 17 . . . . . . . . 9 ((∀𝑢𝐴 𝑍 = 𝑢𝑥𝐴) → (∀𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ ∀𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩))
3635ralbidva 3154 . . . . . . . 8 (∀𝑢𝐴 𝑍 = 𝑢 → (∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩))
3736biimpa 476 . . . . . . 7 ((∀𝑢𝐴 𝑍 = 𝑢 ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩) → ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩)
3827, 37sylan2 593 . . . . . 6 ((∀𝑢𝐴 𝑍 = 𝑢 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩))) → ∀𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨𝑥, 𝑦⟩)
3938, 5sylan2 593 . . . . 5 ((𝑍 ∈ (𝔼‘𝑁) ∧ (∀𝑢𝐴 𝑍 = 𝑢 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)))) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
4039ancoms 458 . . . 4 (((∀𝑢𝐴 𝑍 = 𝑢 ∧ (𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩))) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
4140expl 457 . . 3 (∀𝑢𝐴 𝑍 = 𝑢 → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
4226, 41sylbir 235 . 2 (¬ ∃𝑢𝐴 𝑍𝑢 → (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩))
4321, 42pm2.61i 182 1 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨𝑥, 𝑦⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  wss 3898  c0 4282  cop 4581   class class class wbr 5093  cfv 6486  cn 12132  𝔼cee 28867   Btwn cbtwn 28868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-z 12476  df-uz 12739  df-ico 13253  df-icc 13254  df-fz 13410  df-ee 28870  df-btwn 28871
This theorem is referenced by:  axcont  28956
  Copyright terms: Public domain W3C validator