MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiminre2 Structured version   Visualization version   GIF version

Theorem fiminre2 12217
Description: A nonempty finite set of real numbers is bounded below. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Assertion
Ref Expression
fiminre2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fiminre2
StepHypRef Expression
1 0red 11265 . . . 4 (𝐴 = ∅ → 0 ∈ ℝ)
2 rzal 4508 . . . 4 (𝐴 = ∅ → ∀𝑦𝐴 0 ≤ 𝑦)
3 breq1 5145 . . . . . 6 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
43ralbidv 3177 . . . . 5 (𝑥 = 0 → (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐴 0 ≤ 𝑦))
54rspcev 3621 . . . 4 ((0 ∈ ℝ ∧ ∀𝑦𝐴 0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
61, 2, 5syl2anc 584 . . 3 (𝐴 = ∅ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
76adantl 481 . 2 (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ 𝐴 = ∅) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
8 neqne 2947 . . . 4 𝐴 = ∅ → 𝐴 ≠ ∅)
98adantl 481 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅)
10 simpll 766 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℝ)
11 simplr 768 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin)
12 simpr 484 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
13 fiminre 12216 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
1410, 11, 12, 13syl3anc 1372 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
15 ssrexv 4052 . . . 4 (𝐴 ⊆ ℝ → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦))
1610, 14, 15sylc 65 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
179, 16syldan 591 . 2 (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
187, 17pm2.61dan 812 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  wral 3060  wrex 3069  wss 3950  c0 4332   class class class wbr 5142  Fincfn 8986  cr 11155  0cc0 11156  cle 11297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-addrcl 11217  ax-rnegex 11227  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-om 7889  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302
This theorem is referenced by:  infrefilb  12255  infxrrefi  45398
  Copyright terms: Public domain W3C validator