MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiminre2 Structured version   Visualization version   GIF version

Theorem fiminre2 11780
Description: A nonempty finite set of real numbers is bounded below. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Assertion
Ref Expression
fiminre2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fiminre2
StepHypRef Expression
1 0red 10836 . . . 4 (𝐴 = ∅ → 0 ∈ ℝ)
2 rzal 4420 . . . 4 (𝐴 = ∅ → ∀𝑦𝐴 0 ≤ 𝑦)
3 breq1 5056 . . . . . 6 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
43ralbidv 3118 . . . . 5 (𝑥 = 0 → (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐴 0 ≤ 𝑦))
54rspcev 3537 . . . 4 ((0 ∈ ℝ ∧ ∀𝑦𝐴 0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
61, 2, 5syl2anc 587 . . 3 (𝐴 = ∅ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
76adantl 485 . 2 (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ 𝐴 = ∅) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
8 neqne 2948 . . . 4 𝐴 = ∅ → 𝐴 ≠ ∅)
98adantl 485 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅)
10 simpll 767 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℝ)
11 simplr 769 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin)
12 simpr 488 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
13 fiminre 11779 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
1410, 11, 12, 13syl3anc 1373 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
15 ssrexv 3968 . . . 4 (𝐴 ⊆ ℝ → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦))
1610, 14, 15sylc 65 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
179, 16syldan 594 . 2 (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
187, 17pm2.61dan 813 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  wss 3866  c0 4237   class class class wbr 5053  Fincfn 8626  cr 10728  0cc0 10729  cle 10868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-addrcl 10790  ax-rnegex 10800  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-om 7645  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873
This theorem is referenced by:  infrefilb  11818  infxrrefi  42594
  Copyright terms: Public domain W3C validator