![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fiminre2 | Structured version Visualization version GIF version |
Description: A nonempty finite set of real numbers is bounded below. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
fiminre2 | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 11217 | . . . 4 ⊢ (𝐴 = ∅ → 0 ∈ ℝ) | |
2 | rzal 4509 | . . . 4 ⊢ (𝐴 = ∅ → ∀𝑦 ∈ 𝐴 0 ≤ 𝑦) | |
3 | breq1 5152 | . . . . . 6 ⊢ (𝑥 = 0 → (𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦)) | |
4 | 3 | ralbidv 3178 | . . . . 5 ⊢ (𝑥 = 0 → (∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝐴 0 ≤ 𝑦)) |
5 | 4 | rspcev 3613 | . . . 4 ⊢ ((0 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
6 | 1, 2, 5 | syl2anc 585 | . . 3 ⊢ (𝐴 = ∅ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
7 | 6 | adantl 483 | . 2 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ 𝐴 = ∅) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
8 | neqne 2949 | . . . 4 ⊢ (¬ 𝐴 = ∅ → 𝐴 ≠ ∅) | |
9 | 8 | adantl 483 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅) |
10 | simpll 766 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℝ) | |
11 | simplr 768 | . . . . 5 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) | |
12 | simpr 486 | . . . . 5 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
13 | fiminre 12161 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | |
14 | 10, 11, 12, 13 | syl3anc 1372 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
15 | ssrexv 4052 | . . . 4 ⊢ (𝐴 ⊆ ℝ → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) | |
16 | 10, 14, 15 | sylc 65 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
17 | 9, 16 | syldan 592 | . 2 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
18 | 7, 17 | pm2.61dan 812 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 ⊆ wss 3949 ∅c0 4323 class class class wbr 5149 Fincfn 8939 ℝcr 11109 0cc0 11110 ≤ cle 11249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-addrcl 11171 ax-rnegex 11181 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-om 7856 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 |
This theorem is referenced by: infrefilb 12200 infxrrefi 44092 |
Copyright terms: Public domain | W3C validator |