MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxre2 Structured version   Visualization version   GIF version

Theorem fimaxre2 12213
Description: A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
fimaxre2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fimaxre2
StepHypRef Expression
1 0re 11263 . . . 4 0 ∈ ℝ
2 rzal 4509 . . . 4 (𝐴 = ∅ → ∀𝑦𝐴 𝑦 ≤ 0)
3 brralrspcev 5203 . . . 4 ((0 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 ≤ 0) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
41, 2, 3sylancr 587 . . 3 (𝐴 = ∅ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
54a1i 11 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → (𝐴 = ∅ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
6 fimaxre 12212 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
763expia 1122 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → (𝐴 ≠ ∅ → ∃𝑥𝐴𝑦𝐴 𝑦𝑥))
8 ssrexv 4053 . . . 4 (𝐴 ⊆ ℝ → (∃𝑥𝐴𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
98adantr 480 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → (∃𝑥𝐴𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
107, 9syld 47 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → (𝐴 ≠ ∅ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
115, 10pm2.61dne 3028 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  wss 3951  c0 4333   class class class wbr 5143  Fincfn 8985  cr 11154  0cc0 11155  cle 11296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-addrcl 11216  ax-rnegex 11226  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301
This theorem is referenced by:  fimaxre3  12214  isercolllem2  15702  fsumcvg3  15765  mertenslem2  15921  1arith  16965  ovolicc2lem4  25555  erdszelem8  35203  poimirlem31  37658  poimirlem32  37659  mblfinlem1  37664  itg2addnclem2  37679  ftc1anclem7  37706  ftc1anc  37708  totbndbnd  37796  prdsbnd  37800  uzfissfz  45337  fourierdlem31  46153  fourierdlem79  46200  hoicvr  46563
  Copyright terms: Public domain W3C validator