MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxre2 Structured version   Visualization version   GIF version

Theorem fimaxre2 12104
Description: A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
fimaxre2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fimaxre2
StepHypRef Expression
1 0re 11152 . . . 4 0 ∈ ℝ
2 rzal 4468 . . . 4 (𝐴 = ∅ → ∀𝑦𝐴 𝑦 ≤ 0)
3 brralrspcev 5162 . . . 4 ((0 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 ≤ 0) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
41, 2, 3sylancr 587 . . 3 (𝐴 = ∅ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
54a1i 11 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → (𝐴 = ∅ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
6 fimaxre 12103 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
763expia 1121 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → (𝐴 ≠ ∅ → ∃𝑥𝐴𝑦𝐴 𝑦𝑥))
8 ssrexv 4013 . . . 4 (𝐴 ⊆ ℝ → (∃𝑥𝐴𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
98adantr 480 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → (∃𝑥𝐴𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
107, 9syld 47 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → (𝐴 ≠ ∅ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
115, 10pm2.61dne 3011 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3911  c0 4292   class class class wbr 5102  Fincfn 8895  cr 11043  0cc0 11044  cle 11185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-addrcl 11105  ax-rnegex 11115  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190
This theorem is referenced by:  fimaxre3  12105  isercolllem2  15608  fsumcvg3  15671  mertenslem2  15827  1arith  16874  ovolicc2lem4  25454  erdszelem8  35178  poimirlem31  37638  poimirlem32  37639  mblfinlem1  37644  itg2addnclem2  37659  ftc1anclem7  37686  ftc1anc  37688  totbndbnd  37776  prdsbnd  37780  uzfissfz  45315  fourierdlem31  46129  fourierdlem79  46176  hoicvr  46539
  Copyright terms: Public domain W3C validator