![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimaxre2 | Structured version Visualization version GIF version |
Description: A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.) |
Ref | Expression |
---|---|
fimaxre2 | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10478 | . . . 4 ⊢ 0 ∈ ℝ | |
2 | rzal 4361 | . . . 4 ⊢ (𝐴 = ∅ → ∀𝑦 ∈ 𝐴 𝑦 ≤ 0) | |
3 | brralrspcev 5016 | . . . 4 ⊢ ((0 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤ 0) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
4 | 1, 2, 3 | sylancr 587 | . . 3 ⊢ (𝐴 = ∅ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
5 | 4 | a1i 11 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → (𝐴 = ∅ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
6 | fimaxre 11421 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
7 | 6 | 3expia 1112 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
8 | ssrexv 3950 | . . . 4 ⊢ (𝐴 ⊆ ℝ → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) | |
9 | 8 | adantr 481 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
10 | 7, 9 | syld 47 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → (𝐴 ≠ ∅ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
11 | 5, 10 | pm2.61dne 3069 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1520 ∈ wcel 2079 ≠ wne 2982 ∀wral 3103 ∃wrex 3104 ⊆ wss 3854 ∅c0 4206 class class class wbr 4956 Fincfn 8347 ℝcr 10371 0cc0 10372 ≤ cle 10511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-resscn 10429 ax-1cn 10430 ax-addrcl 10433 ax-rnegex 10443 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-om 7428 df-1o 7944 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-fin 8351 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 |
This theorem is referenced by: fimaxre3 11424 isercolllem2 14844 fsumcvg3 14907 mertenslem2 15062 1arith 16080 ovolicc2lem4 23792 erdszelem8 32009 poimirlem31 34400 poimirlem32 34401 mblfinlem1 34406 itg2addnclem2 34421 ftc1anclem7 34450 ftc1anc 34452 totbndbnd 34545 prdsbnd 34549 uzfissfz 41088 fourierdlem31 41919 fourierdlem79 41966 hoicvr 42326 |
Copyright terms: Public domain | W3C validator |