MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxre2 Structured version   Visualization version   GIF version

Theorem fimaxre2 12101
Description: A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
fimaxre2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fimaxre2
StepHypRef Expression
1 0re 11158 . . . 4 0 ∈ ℝ
2 rzal 4467 . . . 4 (𝐴 = ∅ → ∀𝑦𝐴 𝑦 ≤ 0)
3 brralrspcev 5166 . . . 4 ((0 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 ≤ 0) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
41, 2, 3sylancr 588 . . 3 (𝐴 = ∅ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
54a1i 11 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → (𝐴 = ∅ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
6 fimaxre 12100 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
763expia 1122 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → (𝐴 ≠ ∅ → ∃𝑥𝐴𝑦𝐴 𝑦𝑥))
8 ssrexv 4012 . . . 4 (𝐴 ⊆ ℝ → (∃𝑥𝐴𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
98adantr 482 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → (∃𝑥𝐴𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
107, 9syld 47 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → (𝐴 ≠ ∅ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
115, 10pm2.61dne 3032 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2944  wral 3065  wrex 3074  wss 3911  c0 4283   class class class wbr 5106  Fincfn 8884  cr 11051  0cc0 11052  cle 11191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-resscn 11109  ax-1cn 11110  ax-addrcl 11113  ax-rnegex 11123  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-om 7804  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-fin 8888  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196
This theorem is referenced by:  fimaxre3  12102  isercolllem2  15551  fsumcvg3  15615  mertenslem2  15771  1arith  16800  ovolicc2lem4  24887  erdszelem8  33795  poimirlem31  36112  poimirlem32  36113  mblfinlem1  36118  itg2addnclem2  36133  ftc1anclem7  36160  ftc1anc  36162  totbndbnd  36251  prdsbnd  36255  uzfissfz  43567  fourierdlem31  44386  fourierdlem79  44433  hoicvr  44796
  Copyright terms: Public domain W3C validator