MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxre2 Structured version   Visualization version   GIF version

Theorem fimaxre2 12070
Description: A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
fimaxre2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fimaxre2
StepHypRef Expression
1 0re 11117 . . . 4 0 ∈ ℝ
2 rzal 4460 . . . 4 (𝐴 = ∅ → ∀𝑦𝐴 𝑦 ≤ 0)
3 brralrspcev 5152 . . . 4 ((0 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 ≤ 0) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
41, 2, 3sylancr 587 . . 3 (𝐴 = ∅ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
54a1i 11 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → (𝐴 = ∅ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
6 fimaxre 12069 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
763expia 1121 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → (𝐴 ≠ ∅ → ∃𝑥𝐴𝑦𝐴 𝑦𝑥))
8 ssrexv 4005 . . . 4 (𝐴 ⊆ ℝ → (∃𝑥𝐴𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
98adantr 480 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → (∃𝑥𝐴𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
107, 9syld 47 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → (𝐴 ≠ ∅ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
115, 10pm2.61dne 3011 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3903  c0 4284   class class class wbr 5092  Fincfn 8872  cr 11008  0cc0 11009  cle 11150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-addrcl 11070  ax-rnegex 11080  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155
This theorem is referenced by:  fimaxre3  12071  isercolllem2  15573  fsumcvg3  15636  mertenslem2  15792  1arith  16839  ovolicc2lem4  25419  erdszelem8  35181  poimirlem31  37641  poimirlem32  37642  mblfinlem1  37647  itg2addnclem2  37662  ftc1anclem7  37689  ftc1anc  37691  totbndbnd  37779  prdsbnd  37783  uzfissfz  45316  fourierdlem31  46129  fourierdlem79  46176  hoicvr  46539
  Copyright terms: Public domain W3C validator