Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sectfn Structured version   Visualization version   GIF version

Theorem sectfn 49006
Description: The function value of the function returning the sections of a category is a function over the Cartesian square of the base set of the category. (Contributed by Zhi Wang, 27-Oct-2025.)
Assertion
Ref Expression
sectfn (𝐶 ∈ Cat → (Sect‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))

Proof of Theorem sectfn
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})
2 ovex 7422 . . . . 5 (𝑥(Hom ‘𝐶)𝑦) ∈ V
3 ovex 7422 . . . . 5 (𝑦(Hom ‘𝐶)𝑥) ∈ V
42, 3xpex 7731 . . . 4 ((𝑥(Hom ‘𝐶)𝑦) × (𝑦(Hom ‘𝐶)𝑥)) ∈ V
5 opabssxp 5733 . . . 4 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))} ⊆ ((𝑥(Hom ‘𝐶)𝑦) × (𝑦(Hom ‘𝐶)𝑥))
64, 5ssexi 5279 . . 3 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))} ∈ V
71, 6fnmpoi 8051 . 2 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) Fn ((Base‘𝐶) × (Base‘𝐶))
8 eqid 2730 . . . 4 (Base‘𝐶) = (Base‘𝐶)
9 eqid 2730 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
10 eqid 2730 . . . 4 (comp‘𝐶) = (comp‘𝐶)
11 eqid 2730 . . . 4 (Id‘𝐶) = (Id‘𝐶)
12 eqid 2730 . . . 4 (Sect‘𝐶) = (Sect‘𝐶)
13 id 22 . . . 4 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
148, 9, 10, 11, 12, 13sectffval 17718 . . 3 (𝐶 ∈ Cat → (Sect‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}))
1514fneq1d 6613 . 2 (𝐶 ∈ Cat → ((Sect‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) Fn ((Base‘𝐶) × (Base‘𝐶))))
167, 15mpbiri 258 1 (𝐶 ∈ Cat → (Sect‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4597  {copab 5171   × cxp 5638   Fn wfn 6508  cfv 6513  (class class class)co 7389  cmpo 7391  Basecbs 17185  Hom chom 17237  compcco 17238  Catccat 17631  Idccid 17632  Sectcsect 17712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-sect 17715
This theorem is referenced by:  sectpropdlem  49013
  Copyright terms: Public domain W3C validator