| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sectfn | Structured version Visualization version GIF version | ||
| Description: The function value of the function returning the sections of a category is a function over the Cartesian square of the base set of the category. (Contributed by Zhi Wang, 27-Oct-2025.) |
| Ref | Expression |
|---|---|
| sectfn | ⊢ (𝐶 ∈ Cat → (Sect‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) | |
| 2 | ovex 7374 | . . . . 5 ⊢ (𝑥(Hom ‘𝐶)𝑦) ∈ V | |
| 3 | ovex 7374 | . . . . 5 ⊢ (𝑦(Hom ‘𝐶)𝑥) ∈ V | |
| 4 | 2, 3 | xpex 7681 | . . . 4 ⊢ ((𝑥(Hom ‘𝐶)𝑦) × (𝑦(Hom ‘𝐶)𝑥)) ∈ V |
| 5 | opabssxp 5703 | . . . 4 ⊢ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))} ⊆ ((𝑥(Hom ‘𝐶)𝑦) × (𝑦(Hom ‘𝐶)𝑥)) | |
| 6 | 4, 5 | ssexi 5255 | . . 3 ⊢ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))} ∈ V |
| 7 | 1, 6 | fnmpoi 7997 | . 2 ⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) Fn ((Base‘𝐶) × (Base‘𝐶)) |
| 8 | eqid 2731 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | eqid 2731 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 10 | eqid 2731 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 11 | eqid 2731 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 12 | eqid 2731 | . . . 4 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 13 | id 22 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
| 14 | 8, 9, 10, 11, 12, 13 | sectffval 17652 | . . 3 ⊢ (𝐶 ∈ Cat → (Sect‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})) |
| 15 | 14 | fneq1d 6569 | . 2 ⊢ (𝐶 ∈ Cat → ((Sect‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) Fn ((Base‘𝐶) × (Base‘𝐶)))) |
| 16 | 7, 15 | mpbiri 258 | 1 ⊢ (𝐶 ∈ Cat → (Sect‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4577 {copab 5148 × cxp 5609 Fn wfn 6471 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 Basecbs 17115 Hom chom 17167 compcco 17168 Catccat 17565 Idccid 17566 Sectcsect 17646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-sect 17649 |
| This theorem is referenced by: sectpropdlem 49068 |
| Copyright terms: Public domain | W3C validator |