| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sectfn | Structured version Visualization version GIF version | ||
| Description: The function value of the function returning the sections of a category is a function over the Cartesian square of the base set of the category. (Contributed by Zhi Wang, 27-Oct-2025.) |
| Ref | Expression |
|---|---|
| sectfn | ⊢ (𝐶 ∈ Cat → (Sect‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) | |
| 2 | ovex 7402 | . . . . 5 ⊢ (𝑥(Hom ‘𝐶)𝑦) ∈ V | |
| 3 | ovex 7402 | . . . . 5 ⊢ (𝑦(Hom ‘𝐶)𝑥) ∈ V | |
| 4 | 2, 3 | xpex 7709 | . . . 4 ⊢ ((𝑥(Hom ‘𝐶)𝑦) × (𝑦(Hom ‘𝐶)𝑥)) ∈ V |
| 5 | opabssxp 5723 | . . . 4 ⊢ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))} ⊆ ((𝑥(Hom ‘𝐶)𝑦) × (𝑦(Hom ‘𝐶)𝑥)) | |
| 6 | 4, 5 | ssexi 5272 | . . 3 ⊢ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))} ∈ V |
| 7 | 1, 6 | fnmpoi 8028 | . 2 ⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) Fn ((Base‘𝐶) × (Base‘𝐶)) |
| 8 | eqid 2729 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | eqid 2729 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 10 | eqid 2729 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 11 | eqid 2729 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 12 | eqid 2729 | . . . 4 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 13 | id 22 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
| 14 | 8, 9, 10, 11, 12, 13 | sectffval 17688 | . . 3 ⊢ (𝐶 ∈ Cat → (Sect‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})) |
| 15 | 14 | fneq1d 6593 | . 2 ⊢ (𝐶 ∈ Cat → ((Sect‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) Fn ((Base‘𝐶) × (Base‘𝐶)))) |
| 16 | 7, 15 | mpbiri 258 | 1 ⊢ (𝐶 ∈ Cat → (Sect‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4591 {copab 5164 × cxp 5629 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 Basecbs 17155 Hom chom 17207 compcco 17208 Catccat 17601 Idccid 17602 Sectcsect 17682 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-sect 17685 |
| This theorem is referenced by: sectpropdlem 48998 |
| Copyright terms: Public domain | W3C validator |