| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sectfn | Structured version Visualization version GIF version | ||
| Description: The function value of the function returning the sections of a category is a function over the Cartesian square of the base set of the category. (Contributed by Zhi Wang, 27-Oct-2025.) |
| Ref | Expression |
|---|---|
| sectfn | ⊢ (𝐶 ∈ Cat → (Sect‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) | |
| 2 | ovex 7388 | . . . . 5 ⊢ (𝑥(Hom ‘𝐶)𝑦) ∈ V | |
| 3 | ovex 7388 | . . . . 5 ⊢ (𝑦(Hom ‘𝐶)𝑥) ∈ V | |
| 4 | 2, 3 | xpex 7695 | . . . 4 ⊢ ((𝑥(Hom ‘𝐶)𝑦) × (𝑦(Hom ‘𝐶)𝑥)) ∈ V |
| 5 | opabssxp 5713 | . . . 4 ⊢ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))} ⊆ ((𝑥(Hom ‘𝐶)𝑦) × (𝑦(Hom ‘𝐶)𝑥)) | |
| 6 | 4, 5 | ssexi 5264 | . . 3 ⊢ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))} ∈ V |
| 7 | 1, 6 | fnmpoi 8011 | . 2 ⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) Fn ((Base‘𝐶) × (Base‘𝐶)) |
| 8 | eqid 2733 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | eqid 2733 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 10 | eqid 2733 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 11 | eqid 2733 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 12 | eqid 2733 | . . . 4 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 13 | id 22 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
| 14 | 8, 9, 10, 11, 12, 13 | sectffval 17665 | . . 3 ⊢ (𝐶 ∈ Cat → (Sect‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))})) |
| 15 | 14 | fneq1d 6582 | . 2 ⊢ (𝐶 ∈ Cat → ((Sect‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑥)𝑓) = ((Id‘𝐶)‘𝑥))}) Fn ((Base‘𝐶) × (Base‘𝐶)))) |
| 16 | 7, 15 | mpbiri 258 | 1 ⊢ (𝐶 ∈ Cat → (Sect‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 〈cop 4583 {copab 5157 × cxp 5619 Fn wfn 6484 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 Basecbs 17127 Hom chom 17179 compcco 17180 Catccat 17578 Idccid 17579 Sectcsect 17659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-sect 17662 |
| This theorem is referenced by: sectpropdlem 49197 |
| Copyright terms: Public domain | W3C validator |