Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upeu2lem Structured version   Visualization version   GIF version

Theorem upeu2lem 49189
Description: Lemma for upeu2 49333. There exists a unique morphism from 𝑌 to 𝑍 that commutes if 𝐹:𝑋𝑌 is an isomorphism. (Contributed by Zhi Wang, 20-Sep-2025.)
Hypotheses
Ref Expression
upeu2lem.b 𝐵 = (Base‘𝐶)
upeu2lem.h 𝐻 = (Hom ‘𝐶)
upeu2lem.o · = (comp‘𝐶)
upeu2lem.i 𝐼 = (Iso‘𝐶)
upeu2lem.c (𝜑𝐶 ∈ Cat)
upeu2lem.x (𝜑𝑋𝐵)
upeu2lem.y (𝜑𝑌𝐵)
upeu2lem.z (𝜑𝑍𝐵)
upeu2lem.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
upeu2lem.g (𝜑𝐺 ∈ (𝑋𝐻𝑍))
Assertion
Ref Expression
upeu2lem (𝜑 → ∃!𝑘 ∈ (𝑌𝐻𝑍)𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹))
Distinct variable groups:   · ,𝑘   𝐶,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝑘,𝑋   𝑘,𝑌   𝑘,𝑍   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐼(𝑘)

Proof of Theorem upeu2lem
StepHypRef Expression
1 upeu2lem.b . . 3 𝐵 = (Base‘𝐶)
2 upeu2lem.h . . 3 𝐻 = (Hom ‘𝐶)
3 upeu2lem.o . . 3 · = (comp‘𝐶)
4 upeu2lem.c . . 3 (𝜑𝐶 ∈ Cat)
5 upeu2lem.y . . 3 (𝜑𝑌𝐵)
6 upeu2lem.x . . 3 (𝜑𝑋𝐵)
7 upeu2lem.z . . 3 (𝜑𝑍𝐵)
8 upeu2lem.i . . . . 5 𝐼 = (Iso‘𝐶)
91, 2, 8, 4, 5, 6isohom 17691 . . . 4 (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌𝐻𝑋))
10 eqid 2733 . . . . . 6 (Inv‘𝐶) = (Inv‘𝐶)
111, 10, 4, 6, 5, 8invf 17683 . . . . 5 (𝜑 → (𝑋(Inv‘𝐶)𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))
12 upeu2lem.f . . . . 5 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
1311, 12ffvelcdmd 7027 . . . 4 (𝜑 → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌𝐼𝑋))
149, 13sseldd 3931 . . 3 (𝜑 → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌𝐻𝑋))
15 upeu2lem.g . . 3 (𝜑𝐺 ∈ (𝑋𝐻𝑍))
161, 2, 3, 4, 5, 6, 7, 14, 15catcocl 17599 . 2 (𝜑 → (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) ∈ (𝑌𝐻𝑍))
17 oveq1 7362 . . . . . 6 (𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹) → (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
1817adantl 481 . . . . 5 (((𝜑𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)) → (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
194adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝐶 ∈ Cat)
205adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝑌𝐵)
216adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝑋𝐵)
2214adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌𝐻𝑋))
231, 2, 8, 4, 6, 5isohom 17691 . . . . . . . . . 10 (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌))
2423, 12sseldd 3931 . . . . . . . . 9 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
2524adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝐹 ∈ (𝑋𝐻𝑌))
267adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝑍𝐵)
27 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝑘 ∈ (𝑌𝐻𝑍))
281, 2, 3, 19, 20, 21, 20, 22, 25, 26, 27catass 17600 . . . . . . 7 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → ((𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = (𝑘(⟨𝑌, 𝑌· 𝑍)(𝐹(⟨𝑌, 𝑋· 𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))))
2912adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝐹 ∈ (𝑋𝐼𝑌))
30 eqid 2733 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
313oveqi 7368 . . . . . . . . 9 (⟨𝑌, 𝑋· 𝑌) = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
321, 8, 10, 19, 21, 20, 29, 30, 31isocoinvid 17708 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (𝐹(⟨𝑌, 𝑋· 𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((Id‘𝐶)‘𝑌))
3332oveq2d 7371 . . . . . . 7 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (𝑘(⟨𝑌, 𝑌· 𝑍)(𝐹(⟨𝑌, 𝑋· 𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) = (𝑘(⟨𝑌, 𝑌· 𝑍)((Id‘𝐶)‘𝑌)))
341, 2, 30, 19, 20, 3, 26, 27catrid 17598 . . . . . . 7 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (𝑘(⟨𝑌, 𝑌· 𝑍)((Id‘𝐶)‘𝑌)) = 𝑘)
3528, 33, 343eqtrd 2772 . . . . . 6 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → ((𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = 𝑘)
3635adantr 480 . . . . 5 (((𝜑𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)) → ((𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = 𝑘)
3718, 36eqtr2d 2769 . . . 4 (((𝜑𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)) → 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
38 oveq1 7362 . . . . . 6 (𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) → (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹) = ((𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))(⟨𝑋, 𝑌· 𝑍)𝐹))
3938adantl 481 . . . . 5 (((𝜑𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) → (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹) = ((𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))(⟨𝑋, 𝑌· 𝑍)𝐹))
4015adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝐺 ∈ (𝑋𝐻𝑍))
411, 2, 3, 19, 21, 20, 21, 25, 22, 26, 40catass 17600 . . . . . . 7 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → ((𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺(⟨𝑋, 𝑋· 𝑍)(((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌· 𝑋)𝐹)))
423oveqi 7368 . . . . . . . . 9 (⟨𝑋, 𝑌· 𝑋) = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)
431, 8, 10, 19, 21, 20, 29, 30, 42invcoisoid 17707 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌· 𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
4443oveq2d 7371 . . . . . . 7 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (𝐺(⟨𝑋, 𝑋· 𝑍)(((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌· 𝑋)𝐹)) = (𝐺(⟨𝑋, 𝑋· 𝑍)((Id‘𝐶)‘𝑋)))
451, 2, 30, 19, 21, 3, 26, 40catrid 17598 . . . . . . 7 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (𝐺(⟨𝑋, 𝑋· 𝑍)((Id‘𝐶)‘𝑋)) = 𝐺)
4641, 44, 453eqtrd 2772 . . . . . 6 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → ((𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))(⟨𝑋, 𝑌· 𝑍)𝐹) = 𝐺)
4746adantr 480 . . . . 5 (((𝜑𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) → ((𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))(⟨𝑋, 𝑌· 𝑍)𝐹) = 𝐺)
4839, 47eqtr2d 2769 . . . 4 (((𝜑𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) → 𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹))
4937, 48impbida 800 . . 3 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹) ↔ 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))))
5049ralrimiva 3125 . 2 (𝜑 → ∀𝑘 ∈ (𝑌𝐻𝑍)(𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹) ↔ 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))))
51 reu6i 3683 . 2 (((𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) ∈ (𝑌𝐻𝑍) ∧ ∀𝑘 ∈ (𝑌𝐻𝑍)(𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹) ↔ 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))) → ∃!𝑘 ∈ (𝑌𝐻𝑍)𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹))
5216, 50, 51syl2anc 584 1 (𝜑 → ∃!𝑘 ∈ (𝑌𝐻𝑍)𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  ∃!wreu 3345  cop 4583  cfv 6489  (class class class)co 7355  Basecbs 17127  Hom chom 17179  compcco 17180  Catccat 17578  Idccid 17579  Invcinv 17660  Isociso 17661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-cat 17582  df-cid 17583  df-sect 17662  df-inv 17663  df-iso 17664
This theorem is referenced by:  upeu2  49333
  Copyright terms: Public domain W3C validator