Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upeu2lem Structured version   Visualization version   GIF version

Theorem upeu2lem 49060
Description: Lemma for upeu2 49204. There exists a unique morphism from 𝑌 to 𝑍 that commutes if 𝐹:𝑋𝑌 is an isomorphism. (Contributed by Zhi Wang, 20-Sep-2025.)
Hypotheses
Ref Expression
upeu2lem.b 𝐵 = (Base‘𝐶)
upeu2lem.h 𝐻 = (Hom ‘𝐶)
upeu2lem.o · = (comp‘𝐶)
upeu2lem.i 𝐼 = (Iso‘𝐶)
upeu2lem.c (𝜑𝐶 ∈ Cat)
upeu2lem.x (𝜑𝑋𝐵)
upeu2lem.y (𝜑𝑌𝐵)
upeu2lem.z (𝜑𝑍𝐵)
upeu2lem.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
upeu2lem.g (𝜑𝐺 ∈ (𝑋𝐻𝑍))
Assertion
Ref Expression
upeu2lem (𝜑 → ∃!𝑘 ∈ (𝑌𝐻𝑍)𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹))
Distinct variable groups:   · ,𝑘   𝐶,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝑘,𝑋   𝑘,𝑌   𝑘,𝑍   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐼(𝑘)

Proof of Theorem upeu2lem
StepHypRef Expression
1 upeu2lem.b . . 3 𝐵 = (Base‘𝐶)
2 upeu2lem.h . . 3 𝐻 = (Hom ‘𝐶)
3 upeu2lem.o . . 3 · = (comp‘𝐶)
4 upeu2lem.c . . 3 (𝜑𝐶 ∈ Cat)
5 upeu2lem.y . . 3 (𝜑𝑌𝐵)
6 upeu2lem.x . . 3 (𝜑𝑋𝐵)
7 upeu2lem.z . . 3 (𝜑𝑍𝐵)
8 upeu2lem.i . . . . 5 𝐼 = (Iso‘𝐶)
91, 2, 8, 4, 5, 6isohom 17678 . . . 4 (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌𝐻𝑋))
10 eqid 2731 . . . . . 6 (Inv‘𝐶) = (Inv‘𝐶)
111, 10, 4, 6, 5, 8invf 17670 . . . . 5 (𝜑 → (𝑋(Inv‘𝐶)𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))
12 upeu2lem.f . . . . 5 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
1311, 12ffvelcdmd 7013 . . . 4 (𝜑 → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌𝐼𝑋))
149, 13sseldd 3930 . . 3 (𝜑 → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌𝐻𝑋))
15 upeu2lem.g . . 3 (𝜑𝐺 ∈ (𝑋𝐻𝑍))
161, 2, 3, 4, 5, 6, 7, 14, 15catcocl 17586 . 2 (𝜑 → (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) ∈ (𝑌𝐻𝑍))
17 oveq1 7348 . . . . . 6 (𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹) → (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
1817adantl 481 . . . . 5 (((𝜑𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)) → (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
194adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝐶 ∈ Cat)
205adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝑌𝐵)
216adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝑋𝐵)
2214adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌𝐻𝑋))
231, 2, 8, 4, 6, 5isohom 17678 . . . . . . . . . 10 (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌))
2423, 12sseldd 3930 . . . . . . . . 9 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
2524adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝐹 ∈ (𝑋𝐻𝑌))
267adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝑍𝐵)
27 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝑘 ∈ (𝑌𝐻𝑍))
281, 2, 3, 19, 20, 21, 20, 22, 25, 26, 27catass 17587 . . . . . . 7 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → ((𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = (𝑘(⟨𝑌, 𝑌· 𝑍)(𝐹(⟨𝑌, 𝑋· 𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))))
2912adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝐹 ∈ (𝑋𝐼𝑌))
30 eqid 2731 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
313oveqi 7354 . . . . . . . . 9 (⟨𝑌, 𝑋· 𝑌) = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
321, 8, 10, 19, 21, 20, 29, 30, 31isocoinvid 17695 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (𝐹(⟨𝑌, 𝑋· 𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((Id‘𝐶)‘𝑌))
3332oveq2d 7357 . . . . . . 7 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (𝑘(⟨𝑌, 𝑌· 𝑍)(𝐹(⟨𝑌, 𝑋· 𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) = (𝑘(⟨𝑌, 𝑌· 𝑍)((Id‘𝐶)‘𝑌)))
341, 2, 30, 19, 20, 3, 26, 27catrid 17585 . . . . . . 7 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (𝑘(⟨𝑌, 𝑌· 𝑍)((Id‘𝐶)‘𝑌)) = 𝑘)
3528, 33, 343eqtrd 2770 . . . . . 6 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → ((𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = 𝑘)
3635adantr 480 . . . . 5 (((𝜑𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)) → ((𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = 𝑘)
3718, 36eqtr2d 2767 . . . 4 (((𝜑𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)) → 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
38 oveq1 7348 . . . . . 6 (𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) → (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹) = ((𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))(⟨𝑋, 𝑌· 𝑍)𝐹))
3938adantl 481 . . . . 5 (((𝜑𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) → (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹) = ((𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))(⟨𝑋, 𝑌· 𝑍)𝐹))
4015adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝐺 ∈ (𝑋𝐻𝑍))
411, 2, 3, 19, 21, 20, 21, 25, 22, 26, 40catass 17587 . . . . . . 7 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → ((𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺(⟨𝑋, 𝑋· 𝑍)(((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌· 𝑋)𝐹)))
423oveqi 7354 . . . . . . . . 9 (⟨𝑋, 𝑌· 𝑋) = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)
431, 8, 10, 19, 21, 20, 29, 30, 42invcoisoid 17694 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌· 𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
4443oveq2d 7357 . . . . . . 7 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (𝐺(⟨𝑋, 𝑋· 𝑍)(((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌· 𝑋)𝐹)) = (𝐺(⟨𝑋, 𝑋· 𝑍)((Id‘𝐶)‘𝑋)))
451, 2, 30, 19, 21, 3, 26, 40catrid 17585 . . . . . . 7 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (𝐺(⟨𝑋, 𝑋· 𝑍)((Id‘𝐶)‘𝑋)) = 𝐺)
4641, 44, 453eqtrd 2770 . . . . . 6 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → ((𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))(⟨𝑋, 𝑌· 𝑍)𝐹) = 𝐺)
4746adantr 480 . . . . 5 (((𝜑𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) → ((𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))(⟨𝑋, 𝑌· 𝑍)𝐹) = 𝐺)
4839, 47eqtr2d 2767 . . . 4 (((𝜑𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) → 𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹))
4937, 48impbida 800 . . 3 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹) ↔ 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))))
5049ralrimiva 3124 . 2 (𝜑 → ∀𝑘 ∈ (𝑌𝐻𝑍)(𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹) ↔ 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))))
51 reu6i 3682 . 2 (((𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) ∈ (𝑌𝐻𝑍) ∧ ∀𝑘 ∈ (𝑌𝐻𝑍)(𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹) ↔ 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))) → ∃!𝑘 ∈ (𝑌𝐻𝑍)𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹))
5216, 50, 51syl2anc 584 1 (𝜑 → ∃!𝑘 ∈ (𝑌𝐻𝑍)𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  ∃!wreu 3344  cop 4577  cfv 6476  (class class class)co 7341  Basecbs 17115  Hom chom 17167  compcco 17168  Catccat 17565  Idccid 17566  Invcinv 17647  Isociso 17648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-cat 17569  df-cid 17570  df-sect 17649  df-inv 17650  df-iso 17651
This theorem is referenced by:  upeu2  49204
  Copyright terms: Public domain W3C validator