Proof of Theorem upeu2lem
| Step | Hyp | Ref
| Expression |
| 1 | | upeu2lem.b |
. . 3
⊢ 𝐵 = (Base‘𝐶) |
| 2 | | upeu2lem.h |
. . 3
⊢ 𝐻 = (Hom ‘𝐶) |
| 3 | | upeu2lem.o |
. . 3
⊢ · =
(comp‘𝐶) |
| 4 | | upeu2lem.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 5 | | upeu2lem.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 6 | | upeu2lem.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 7 | | upeu2lem.z |
. . 3
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| 8 | | upeu2lem.i |
. . . . 5
⊢ 𝐼 = (Iso‘𝐶) |
| 9 | 1, 2, 8, 4, 5, 6 | isohom 17816 |
. . . 4
⊢ (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌𝐻𝑋)) |
| 10 | | eqid 2736 |
. . . . . 6
⊢
(Inv‘𝐶) =
(Inv‘𝐶) |
| 11 | 1, 10, 4, 6, 5, 8 | invf 17808 |
. . . . 5
⊢ (𝜑 → (𝑋(Inv‘𝐶)𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋)) |
| 12 | | upeu2lem.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
| 13 | 11, 12 | ffvelcdmd 7103 |
. . . 4
⊢ (𝜑 → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌𝐼𝑋)) |
| 14 | 9, 13 | sseldd 3983 |
. . 3
⊢ (𝜑 → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌𝐻𝑋)) |
| 15 | | upeu2lem.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑍)) |
| 16 | 1, 2, 3, 4, 5, 6, 7, 14, 15 | catcocl 17724 |
. 2
⊢ (𝜑 → (𝐺(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) ∈ (𝑌𝐻𝑍)) |
| 17 | | oveq1 7436 |
. . . . . 6
⊢ (𝐺 = (𝑘(〈𝑋, 𝑌〉 · 𝑍)𝐹) → (𝐺(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((𝑘(〈𝑋, 𝑌〉 · 𝑍)𝐹)(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) |
| 18 | 17 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝐺 = (𝑘(〈𝑋, 𝑌〉 · 𝑍)𝐹)) → (𝐺(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((𝑘(〈𝑋, 𝑌〉 · 𝑍)𝐹)(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) |
| 19 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) → 𝐶 ∈ Cat) |
| 20 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) → 𝑌 ∈ 𝐵) |
| 21 | 6 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) → 𝑋 ∈ 𝐵) |
| 22 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌𝐻𝑋)) |
| 23 | 1, 2, 8, 4, 6, 5 | isohom 17816 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌)) |
| 24 | 23, 12 | sseldd 3983 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| 25 | 24 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) → 𝐹 ∈ (𝑋𝐻𝑌)) |
| 26 | 7 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) → 𝑍 ∈ 𝐵) |
| 27 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) → 𝑘 ∈ (𝑌𝐻𝑍)) |
| 28 | 1, 2, 3, 19, 20, 21, 20, 22, 25, 26, 27 | catass 17725 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) → ((𝑘(〈𝑋, 𝑌〉 · 𝑍)𝐹)(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = (𝑘(〈𝑌, 𝑌〉 · 𝑍)(𝐹(〈𝑌, 𝑋〉 · 𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))) |
| 29 | 12 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) → 𝐹 ∈ (𝑋𝐼𝑌)) |
| 30 | | eqid 2736 |
. . . . . . . . 9
⊢
(Id‘𝐶) =
(Id‘𝐶) |
| 31 | 3 | oveqi 7442 |
. . . . . . . . 9
⊢
(〈𝑌, 𝑋〉 · 𝑌) = (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) |
| 32 | 1, 8, 10, 19, 21, 20, 29, 30, 31 | isocoinvid 17833 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) → (𝐹(〈𝑌, 𝑋〉 · 𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((Id‘𝐶)‘𝑌)) |
| 33 | 32 | oveq2d 7445 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) → (𝑘(〈𝑌, 𝑌〉 · 𝑍)(𝐹(〈𝑌, 𝑋〉 · 𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) = (𝑘(〈𝑌, 𝑌〉 · 𝑍)((Id‘𝐶)‘𝑌))) |
| 34 | 1, 2, 30, 19, 20, 3, 26, 27 | catrid 17723 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) → (𝑘(〈𝑌, 𝑌〉 · 𝑍)((Id‘𝐶)‘𝑌)) = 𝑘) |
| 35 | 28, 33, 34 | 3eqtrd 2780 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) → ((𝑘(〈𝑋, 𝑌〉 · 𝑍)𝐹)(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = 𝑘) |
| 36 | 35 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝐺 = (𝑘(〈𝑋, 𝑌〉 · 𝑍)𝐹)) → ((𝑘(〈𝑋, 𝑌〉 · 𝑍)𝐹)(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = 𝑘) |
| 37 | 18, 36 | eqtr2d 2777 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝐺 = (𝑘(〈𝑋, 𝑌〉 · 𝑍)𝐹)) → 𝑘 = (𝐺(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) |
| 38 | | oveq1 7436 |
. . . . . 6
⊢ (𝑘 = (𝐺(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) → (𝑘(〈𝑋, 𝑌〉 · 𝑍)𝐹) = ((𝐺(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
| 39 | 38 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝑘 = (𝐺(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) → (𝑘(〈𝑋, 𝑌〉 · 𝑍)𝐹) = ((𝐺(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
| 40 | 15 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) → 𝐺 ∈ (𝑋𝐻𝑍)) |
| 41 | 1, 2, 3, 19, 21, 20, 21, 25, 22, 26, 40 | catass 17725 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) → ((𝐺(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺(〈𝑋, 𝑋〉 · 𝑍)(((𝑋(Inv‘𝐶)𝑌)‘𝐹)(〈𝑋, 𝑌〉 · 𝑋)𝐹))) |
| 42 | 3 | oveqi 7442 |
. . . . . . . . 9
⊢
(〈𝑋, 𝑌〉 · 𝑋) = (〈𝑋, 𝑌〉(comp‘𝐶)𝑋) |
| 43 | 1, 8, 10, 19, 21, 20, 29, 30, 42 | invcoisoid 17832 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹)(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) |
| 44 | 43 | oveq2d 7445 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) → (𝐺(〈𝑋, 𝑋〉 · 𝑍)(((𝑋(Inv‘𝐶)𝑌)‘𝐹)(〈𝑋, 𝑌〉 · 𝑋)𝐹)) = (𝐺(〈𝑋, 𝑋〉 · 𝑍)((Id‘𝐶)‘𝑋))) |
| 45 | 1, 2, 30, 19, 21, 3, 26, 40 | catrid 17723 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) → (𝐺(〈𝑋, 𝑋〉 · 𝑍)((Id‘𝐶)‘𝑋)) = 𝐺) |
| 46 | 41, 44, 45 | 3eqtrd 2780 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) → ((𝐺(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))(〈𝑋, 𝑌〉 · 𝑍)𝐹) = 𝐺) |
| 47 | 46 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝑘 = (𝐺(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) → ((𝐺(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))(〈𝑋, 𝑌〉 · 𝑍)𝐹) = 𝐺) |
| 48 | 39, 47 | eqtr2d 2777 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝑘 = (𝐺(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) → 𝐺 = (𝑘(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
| 49 | 37, 48 | impbida 801 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑌𝐻𝑍)) → (𝐺 = (𝑘(〈𝑋, 𝑌〉 · 𝑍)𝐹) ↔ 𝑘 = (𝐺(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))) |
| 50 | 49 | ralrimiva 3145 |
. 2
⊢ (𝜑 → ∀𝑘 ∈ (𝑌𝐻𝑍)(𝐺 = (𝑘(〈𝑋, 𝑌〉 · 𝑍)𝐹) ↔ 𝑘 = (𝐺(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))) |
| 51 | | reu6i 3733 |
. 2
⊢ (((𝐺(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) ∈ (𝑌𝐻𝑍) ∧ ∀𝑘 ∈ (𝑌𝐻𝑍)(𝐺 = (𝑘(〈𝑋, 𝑌〉 · 𝑍)𝐹) ↔ 𝑘 = (𝐺(〈𝑌, 𝑋〉 · 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))) → ∃!𝑘 ∈ (𝑌𝐻𝑍)𝐺 = (𝑘(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
| 52 | 16, 50, 51 | syl2anc 584 |
1
⊢ (𝜑 → ∃!𝑘 ∈ (𝑌𝐻𝑍)𝐺 = (𝑘(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |