Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upeu2lem Structured version   Visualization version   GIF version

Theorem upeu2lem 48772
Description: Lemma for upeu2 48782. There exists a unique morphism from 𝑌 to 𝑍 that commutes if 𝐹:𝑋𝑌 is an isomorphism. (Contributed by Zhi Wang, 20-Sep-2025.)
Hypotheses
Ref Expression
upeu2lem.b 𝐵 = (Base‘𝐶)
upeu2lem.h 𝐻 = (Hom ‘𝐶)
upeu2lem.o · = (comp‘𝐶)
upeu2lem.i 𝐼 = (Iso‘𝐶)
upeu2lem.c (𝜑𝐶 ∈ Cat)
upeu2lem.x (𝜑𝑋𝐵)
upeu2lem.y (𝜑𝑌𝐵)
upeu2lem.z (𝜑𝑍𝐵)
upeu2lem.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
upeu2lem.g (𝜑𝐺 ∈ (𝑋𝐻𝑍))
Assertion
Ref Expression
upeu2lem (𝜑 → ∃!𝑘 ∈ (𝑌𝐻𝑍)𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹))
Distinct variable groups:   · ,𝑘   𝐶,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝑘,𝑋   𝑘,𝑌   𝑘,𝑍   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐼(𝑘)

Proof of Theorem upeu2lem
StepHypRef Expression
1 upeu2lem.b . . 3 𝐵 = (Base‘𝐶)
2 upeu2lem.h . . 3 𝐻 = (Hom ‘𝐶)
3 upeu2lem.o . . 3 · = (comp‘𝐶)
4 upeu2lem.c . . 3 (𝜑𝐶 ∈ Cat)
5 upeu2lem.y . . 3 (𝜑𝑌𝐵)
6 upeu2lem.x . . 3 (𝜑𝑋𝐵)
7 upeu2lem.z . . 3 (𝜑𝑍𝐵)
8 upeu2lem.i . . . . 5 𝐼 = (Iso‘𝐶)
91, 2, 8, 4, 5, 6isohom 17858 . . . 4 (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌𝐻𝑋))
10 eqid 2740 . . . . . 6 (Inv‘𝐶) = (Inv‘𝐶)
111, 10, 4, 6, 5, 8invf 17850 . . . . 5 (𝜑 → (𝑋(Inv‘𝐶)𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))
12 upeu2lem.f . . . . 5 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
1311, 12ffvelcdmd 7123 . . . 4 (𝜑 → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌𝐼𝑋))
149, 13sseldd 4010 . . 3 (𝜑 → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌𝐻𝑋))
15 upeu2lem.g . . 3 (𝜑𝐺 ∈ (𝑋𝐻𝑍))
161, 2, 3, 4, 5, 6, 7, 14, 15catcocl 17764 . 2 (𝜑 → (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) ∈ (𝑌𝐻𝑍))
17 oveq1 7459 . . . . . 6 (𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹) → (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
1817adantl 481 . . . . 5 (((𝜑𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)) → (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
194adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝐶 ∈ Cat)
205adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝑌𝐵)
216adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝑋𝐵)
2214adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌𝐻𝑋))
231, 2, 8, 4, 6, 5isohom 17858 . . . . . . . . . 10 (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌))
2423, 12sseldd 4010 . . . . . . . . 9 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
2524adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝐹 ∈ (𝑋𝐻𝑌))
267adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝑍𝐵)
27 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝑘 ∈ (𝑌𝐻𝑍))
281, 2, 3, 19, 20, 21, 20, 22, 25, 26, 27catass 17765 . . . . . . 7 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → ((𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = (𝑘(⟨𝑌, 𝑌· 𝑍)(𝐹(⟨𝑌, 𝑋· 𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))))
2912adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝐹 ∈ (𝑋𝐼𝑌))
30 eqid 2740 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
313oveqi 7465 . . . . . . . . 9 (⟨𝑌, 𝑋· 𝑌) = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
321, 8, 10, 19, 21, 20, 29, 30, 31isocoinvid 17875 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (𝐹(⟨𝑌, 𝑋· 𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((Id‘𝐶)‘𝑌))
3332oveq2d 7468 . . . . . . 7 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (𝑘(⟨𝑌, 𝑌· 𝑍)(𝐹(⟨𝑌, 𝑋· 𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) = (𝑘(⟨𝑌, 𝑌· 𝑍)((Id‘𝐶)‘𝑌)))
341, 2, 30, 19, 20, 3, 26, 27catrid 17763 . . . . . . 7 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (𝑘(⟨𝑌, 𝑌· 𝑍)((Id‘𝐶)‘𝑌)) = 𝑘)
3528, 33, 343eqtrd 2784 . . . . . 6 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → ((𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = 𝑘)
3635adantr 480 . . . . 5 (((𝜑𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)) → ((𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = 𝑘)
3718, 36eqtr2d 2781 . . . 4 (((𝜑𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹)) → 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
38 oveq1 7459 . . . . . 6 (𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) → (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹) = ((𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))(⟨𝑋, 𝑌· 𝑍)𝐹))
3938adantl 481 . . . . 5 (((𝜑𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) → (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹) = ((𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))(⟨𝑋, 𝑌· 𝑍)𝐹))
4015adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → 𝐺 ∈ (𝑋𝐻𝑍))
411, 2, 3, 19, 21, 20, 21, 25, 22, 26, 40catass 17765 . . . . . . 7 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → ((𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺(⟨𝑋, 𝑋· 𝑍)(((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌· 𝑋)𝐹)))
423oveqi 7465 . . . . . . . . 9 (⟨𝑋, 𝑌· 𝑋) = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)
431, 8, 10, 19, 21, 20, 29, 30, 42invcoisoid 17874 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌· 𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
4443oveq2d 7468 . . . . . . 7 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (𝐺(⟨𝑋, 𝑋· 𝑍)(((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌· 𝑋)𝐹)) = (𝐺(⟨𝑋, 𝑋· 𝑍)((Id‘𝐶)‘𝑋)))
451, 2, 30, 19, 21, 3, 26, 40catrid 17763 . . . . . . 7 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (𝐺(⟨𝑋, 𝑋· 𝑍)((Id‘𝐶)‘𝑋)) = 𝐺)
4641, 44, 453eqtrd 2784 . . . . . 6 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → ((𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))(⟨𝑋, 𝑌· 𝑍)𝐹) = 𝐺)
4746adantr 480 . . . . 5 (((𝜑𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) → ((𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))(⟨𝑋, 𝑌· 𝑍)𝐹) = 𝐺)
4839, 47eqtr2d 2781 . . . 4 (((𝜑𝑘 ∈ (𝑌𝐻𝑍)) ∧ 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) → 𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹))
4937, 48impbida 800 . . 3 ((𝜑𝑘 ∈ (𝑌𝐻𝑍)) → (𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹) ↔ 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))))
5049ralrimiva 3152 . 2 (𝜑 → ∀𝑘 ∈ (𝑌𝐻𝑍)(𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹) ↔ 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹))))
51 reu6i 3751 . 2 (((𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) ∈ (𝑌𝐻𝑍) ∧ ∀𝑘 ∈ (𝑌𝐻𝑍)(𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹) ↔ 𝑘 = (𝐺(⟨𝑌, 𝑋· 𝑍)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))) → ∃!𝑘 ∈ (𝑌𝐻𝑍)𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹))
5216, 50, 51syl2anc 583 1 (𝜑 → ∃!𝑘 ∈ (𝑌𝐻𝑍)𝐺 = (𝑘(⟨𝑋, 𝑌· 𝑍)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  ∃!wreu 3386  cop 4655  cfv 6577  (class class class)co 7452  Basecbs 17279  Hom chom 17343  compcco 17344  Catccat 17743  Idccid 17744  Invcinv 17827  Isociso 17828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5305  ax-sep 5319  ax-nul 5326  ax-pow 5385  ax-pr 5449  ax-un 7774
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3445  df-v 3491  df-sbc 3806  df-csb 3923  df-dif 3980  df-un 3982  df-in 3984  df-ss 3994  df-nul 4354  df-if 4550  df-pw 4625  df-sn 4650  df-pr 4652  df-op 4656  df-uni 4934  df-iun 5019  df-br 5169  df-opab 5231  df-mpt 5252  df-id 5595  df-xp 5708  df-rel 5709  df-cnv 5710  df-co 5711  df-dm 5712  df-rn 5713  df-res 5714  df-ima 5715  df-iota 6529  df-fun 6579  df-fn 6580  df-f 6581  df-f1 6582  df-fo 6583  df-f1o 6584  df-fv 6585  df-riota 7408  df-ov 7455  df-oprab 7456  df-mpo 7457  df-1st 8034  df-2nd 8035  df-cat 17747  df-cid 17748  df-sect 17829  df-inv 17830  df-iso 17831
This theorem is referenced by:  upeu2  48782
  Copyright terms: Public domain W3C validator