| Step | Hyp | Ref
| Expression |
| 1 | | ovex 7446 |
. . . . . 6
⊢ (𝑥(Sect‘𝐶)𝑦) ∈ V |
| 2 | 1 | inex1 5297 |
. . . . 5
⊢ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)) ∈ V |
| 3 | 2 | a1i 11 |
. . . 4
⊢ ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)) ∈ V) |
| 4 | 3 | ralrimivva 3189 |
. . 3
⊢ (𝐶 ∈ Cat → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)) ∈ V) |
| 5 | | eqid 2734 |
. . . 4
⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) |
| 6 | 5 | fnmpo 8076 |
. . 3
⊢
(∀𝑥 ∈
(Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)) ∈ V → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 7 | 4, 6 | syl 17 |
. 2
⊢ (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 8 | | df-inv 17764 |
. . . 4
⊢ Inv =
(𝑐 ∈ Cat ↦
(𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥)))) |
| 9 | | fveq2 6886 |
. . . . 5
⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) |
| 10 | | fveq2 6886 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (Sect‘𝑐) = (Sect‘𝐶)) |
| 11 | 10 | oveqd 7430 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (𝑥(Sect‘𝑐)𝑦) = (𝑥(Sect‘𝐶)𝑦)) |
| 12 | 10 | oveqd 7430 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (𝑦(Sect‘𝑐)𝑥) = (𝑦(Sect‘𝐶)𝑥)) |
| 13 | 12 | cnveqd 5866 |
. . . . . 6
⊢ (𝑐 = 𝐶 → ◡(𝑦(Sect‘𝑐)𝑥) = ◡(𝑦(Sect‘𝐶)𝑥)) |
| 14 | 11, 13 | ineq12d 4201 |
. . . . 5
⊢ (𝑐 = 𝐶 → ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥)) = ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) |
| 15 | 9, 9, 14 | mpoeq123dv 7490 |
. . . 4
⊢ (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)))) |
| 16 | | id 22 |
. . . 4
⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) |
| 17 | | fvex 6899 |
. . . . . 6
⊢
(Base‘𝐶)
∈ V |
| 18 | 17, 17 | pm3.2i 470 |
. . . . 5
⊢
((Base‘𝐶)
∈ V ∧ (Base‘𝐶) ∈ V) |
| 19 | | mpoexga 8084 |
. . . . 5
⊢
(((Base‘𝐶)
∈ V ∧ (Base‘𝐶) ∈ V) → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) ∈ V) |
| 20 | 18, 19 | mp1i 13 |
. . . 4
⊢ (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) ∈ V) |
| 21 | 8, 15, 16, 20 | fvmptd3 7019 |
. . 3
⊢ (𝐶 ∈ Cat →
(Inv‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)))) |
| 22 | 21 | fneq1d 6641 |
. 2
⊢ (𝐶 ∈ Cat →
((Inv‘𝐶) Fn
((Base‘𝐶) ×
(Base‘𝐶)) ↔
(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) Fn ((Base‘𝐶) × (Base‘𝐶)))) |
| 23 | 7, 22 | mpbird 257 |
1
⊢ (𝐶 ∈ Cat →
(Inv‘𝐶) Fn
((Base‘𝐶) ×
(Base‘𝐶))) |