Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symgcntz Structured version   Visualization version   GIF version

Theorem symgcntz 31256
Description: All elements of a (finite) set of permutations commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Hypotheses
Ref Expression
symgcntz.s 𝑆 = (SymGrp‘𝐷)
symgcntz.b 𝐵 = (Base‘𝑆)
symgcntz.z 𝑍 = (Cntz‘𝑆)
symgcntz.a (𝜑𝐴𝐵)
symgcntz.1 (𝜑Disj 𝑥𝐴 dom (𝑥 ∖ I ))
Assertion
Ref Expression
symgcntz (𝜑𝐴 ⊆ (𝑍𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝑍(𝑥)

Proof of Theorem symgcntz
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐 = 𝑑) → 𝑐 = 𝑑)
21oveq1d 7270 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐 = 𝑑) → (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑑))
31oveq2d 7271 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐 = 𝑑) → (𝑑(+g𝑆)𝑐) = (𝑑(+g𝑆)𝑑))
42, 3eqtr4d 2781 . . . 4 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐 = 𝑑) → (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐))
5 symgcntz.s . . . . . 6 𝑆 = (SymGrp‘𝐷)
6 symgcntz.b . . . . . 6 𝐵 = (Base‘𝑆)
7 symgcntz.a . . . . . . . 8 (𝜑𝐴𝐵)
87ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝐴𝐵)
9 simplrl 773 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑐𝐴)
108, 9sseldd 3918 . . . . . 6 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑐𝐵)
11 simplrr 774 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑑𝐴)
128, 11sseldd 3918 . . . . . 6 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑑𝐵)
13 symgcntz.1 . . . . . . . 8 (𝜑Disj 𝑥𝐴 dom (𝑥 ∖ I ))
1413ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → Disj 𝑥𝐴 dom (𝑥 ∖ I ))
15 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑐𝑑)
16 difeq1 4046 . . . . . . . . 9 (𝑥 = 𝑐 → (𝑥 ∖ I ) = (𝑐 ∖ I ))
1716dmeqd 5803 . . . . . . . 8 (𝑥 = 𝑐 → dom (𝑥 ∖ I ) = dom (𝑐 ∖ I ))
18 difeq1 4046 . . . . . . . . 9 (𝑥 = 𝑑 → (𝑥 ∖ I ) = (𝑑 ∖ I ))
1918dmeqd 5803 . . . . . . . 8 (𝑥 = 𝑑 → dom (𝑥 ∖ I ) = dom (𝑑 ∖ I ))
2017, 19disji2 5052 . . . . . . 7 ((Disj 𝑥𝐴 dom (𝑥 ∖ I ) ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → (dom (𝑐 ∖ I ) ∩ dom (𝑑 ∖ I )) = ∅)
2114, 9, 11, 15, 20syl121anc 1373 . . . . . 6 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (dom (𝑐 ∖ I ) ∩ dom (𝑑 ∖ I )) = ∅)
225, 6, 10, 12, 21symgcom2 31255 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (𝑐𝑑) = (𝑑𝑐))
23 eqid 2738 . . . . . . 7 (+g𝑆) = (+g𝑆)
245, 6, 23symgov 18906 . . . . . 6 ((𝑐𝐵𝑑𝐵) → (𝑐(+g𝑆)𝑑) = (𝑐𝑑))
2510, 12, 24syl2anc 583 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (𝑐(+g𝑆)𝑑) = (𝑐𝑑))
265, 6, 23symgov 18906 . . . . . 6 ((𝑑𝐵𝑐𝐵) → (𝑑(+g𝑆)𝑐) = (𝑑𝑐))
2712, 10, 26syl2anc 583 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (𝑑(+g𝑆)𝑐) = (𝑑𝑐))
2822, 25, 273eqtr4d 2788 . . . 4 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐))
294, 28pm2.61dane 3031 . . 3 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐))
3029ralrimivva 3114 . 2 (𝜑 → ∀𝑐𝐴𝑑𝐴 (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐))
31 symgcntz.z . . . 4 𝑍 = (Cntz‘𝑆)
326, 23, 31sscntz 18847 . . 3 ((𝐴𝐵𝐴𝐵) → (𝐴 ⊆ (𝑍𝐴) ↔ ∀𝑐𝐴𝑑𝐴 (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐)))
337, 7, 32syl2anc 583 . 2 (𝜑 → (𝐴 ⊆ (𝑍𝐴) ↔ ∀𝑐𝐴𝑑𝐴 (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐)))
3430, 33mpbird 256 1 (𝜑𝐴 ⊆ (𝑍𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  cdif 3880  cin 3882  wss 3883  c0 4253  Disj wdisj 5035   I cid 5479  dom cdm 5580  ccom 5584  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Cntzccntz 18836  SymGrpcsymg 18889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-tset 16907  df-efmnd 18423  df-cntz 18838  df-symg 18890
This theorem is referenced by:  tocyccntz  31313
  Copyright terms: Public domain W3C validator