| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > symgcntz | Structured version Visualization version GIF version | ||
| Description: All elements of a (finite) set of permutations commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
| Ref | Expression |
|---|---|
| symgcntz.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| symgcntz.b | ⊢ 𝐵 = (Base‘𝑆) |
| symgcntz.z | ⊢ 𝑍 = (Cntz‘𝑆) |
| symgcntz.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| symgcntz.1 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 dom (𝑥 ∖ I )) |
| Ref | Expression |
|---|---|
| symgcntz | ⊢ (𝜑 → 𝐴 ⊆ (𝑍‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 = 𝑑) → 𝑐 = 𝑑) | |
| 2 | 1 | oveq1d 7404 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 = 𝑑) → (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑑)) |
| 3 | 1 | oveq2d 7405 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 = 𝑑) → (𝑑(+g‘𝑆)𝑐) = (𝑑(+g‘𝑆)𝑑)) |
| 4 | 2, 3 | eqtr4d 2768 | . . . 4 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 = 𝑑) → (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐)) |
| 5 | symgcntz.s | . . . . . 6 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 6 | symgcntz.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 7 | symgcntz.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 8 | 7 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝐴 ⊆ 𝐵) |
| 9 | simplrl 776 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑐 ∈ 𝐴) | |
| 10 | 8, 9 | sseldd 3949 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑐 ∈ 𝐵) |
| 11 | simplrr 777 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑑 ∈ 𝐴) | |
| 12 | 8, 11 | sseldd 3949 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑑 ∈ 𝐵) |
| 13 | symgcntz.1 | . . . . . . . 8 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 dom (𝑥 ∖ I )) | |
| 14 | 13 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → Disj 𝑥 ∈ 𝐴 dom (𝑥 ∖ I )) |
| 15 | simpr 484 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑐 ≠ 𝑑) | |
| 16 | difeq1 4084 | . . . . . . . . 9 ⊢ (𝑥 = 𝑐 → (𝑥 ∖ I ) = (𝑐 ∖ I )) | |
| 17 | 16 | dmeqd 5871 | . . . . . . . 8 ⊢ (𝑥 = 𝑐 → dom (𝑥 ∖ I ) = dom (𝑐 ∖ I )) |
| 18 | difeq1 4084 | . . . . . . . . 9 ⊢ (𝑥 = 𝑑 → (𝑥 ∖ I ) = (𝑑 ∖ I )) | |
| 19 | 18 | dmeqd 5871 | . . . . . . . 8 ⊢ (𝑥 = 𝑑 → dom (𝑥 ∖ I ) = dom (𝑑 ∖ I )) |
| 20 | 17, 19 | disji2 5093 | . . . . . . 7 ⊢ ((Disj 𝑥 ∈ 𝐴 dom (𝑥 ∖ I ) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ 𝑐 ≠ 𝑑) → (dom (𝑐 ∖ I ) ∩ dom (𝑑 ∖ I )) = ∅) |
| 21 | 14, 9, 11, 15, 20 | syl121anc 1377 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (dom (𝑐 ∖ I ) ∩ dom (𝑑 ∖ I )) = ∅) |
| 22 | 5, 6, 10, 12, 21 | symgcom2 33047 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (𝑐 ∘ 𝑑) = (𝑑 ∘ 𝑐)) |
| 23 | eqid 2730 | . . . . . . 7 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 24 | 5, 6, 23 | symgov 19320 | . . . . . 6 ⊢ ((𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵) → (𝑐(+g‘𝑆)𝑑) = (𝑐 ∘ 𝑑)) |
| 25 | 10, 12, 24 | syl2anc 584 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (𝑐(+g‘𝑆)𝑑) = (𝑐 ∘ 𝑑)) |
| 26 | 5, 6, 23 | symgov 19320 | . . . . . 6 ⊢ ((𝑑 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) → (𝑑(+g‘𝑆)𝑐) = (𝑑 ∘ 𝑐)) |
| 27 | 12, 10, 26 | syl2anc 584 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (𝑑(+g‘𝑆)𝑐) = (𝑑 ∘ 𝑐)) |
| 28 | 22, 25, 27 | 3eqtr4d 2775 | . . . 4 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐)) |
| 29 | 4, 28 | pm2.61dane 3013 | . . 3 ⊢ ((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐)) |
| 30 | 29 | ralrimivva 3181 | . 2 ⊢ (𝜑 → ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐)) |
| 31 | symgcntz.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝑆) | |
| 32 | 6, 23, 31 | sscntz 19264 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ⊆ (𝑍‘𝐴) ↔ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐))) |
| 33 | 7, 7, 32 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ⊆ (𝑍‘𝐴) ↔ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐))) |
| 34 | 30, 33 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝑍‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∖ cdif 3913 ∩ cin 3915 ⊆ wss 3916 ∅c0 4298 Disj wdisj 5076 I cid 5534 dom cdm 5640 ∘ ccom 5644 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 Cntzccntz 19253 SymGrpcsymg 19305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-disj 5077 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-tset 17245 df-efmnd 18802 df-cntz 19255 df-symg 19306 |
| This theorem is referenced by: tocyccntz 33107 |
| Copyright terms: Public domain | W3C validator |