Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symgcntz Structured version   Visualization version   GIF version

Theorem symgcntz 32803
Description: All elements of a (finite) set of permutations commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Hypotheses
Ref Expression
symgcntz.s 𝑆 = (SymGrp‘𝐷)
symgcntz.b 𝐵 = (Base‘𝑆)
symgcntz.z 𝑍 = (Cntz‘𝑆)
symgcntz.a (𝜑𝐴𝐵)
symgcntz.1 (𝜑Disj 𝑥𝐴 dom (𝑥 ∖ I ))
Assertion
Ref Expression
symgcntz (𝜑𝐴 ⊆ (𝑍𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝑍(𝑥)

Proof of Theorem symgcntz
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐 = 𝑑) → 𝑐 = 𝑑)
21oveq1d 7430 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐 = 𝑑) → (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑑))
31oveq2d 7431 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐 = 𝑑) → (𝑑(+g𝑆)𝑐) = (𝑑(+g𝑆)𝑑))
42, 3eqtr4d 2771 . . . 4 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐 = 𝑑) → (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐))
5 symgcntz.s . . . . . 6 𝑆 = (SymGrp‘𝐷)
6 symgcntz.b . . . . . 6 𝐵 = (Base‘𝑆)
7 symgcntz.a . . . . . . . 8 (𝜑𝐴𝐵)
87ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝐴𝐵)
9 simplrl 776 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑐𝐴)
108, 9sseldd 3980 . . . . . 6 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑐𝐵)
11 simplrr 777 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑑𝐴)
128, 11sseldd 3980 . . . . . 6 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑑𝐵)
13 symgcntz.1 . . . . . . . 8 (𝜑Disj 𝑥𝐴 dom (𝑥 ∖ I ))
1413ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → Disj 𝑥𝐴 dom (𝑥 ∖ I ))
15 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑐𝑑)
16 difeq1 4112 . . . . . . . . 9 (𝑥 = 𝑐 → (𝑥 ∖ I ) = (𝑐 ∖ I ))
1716dmeqd 5903 . . . . . . . 8 (𝑥 = 𝑐 → dom (𝑥 ∖ I ) = dom (𝑐 ∖ I ))
18 difeq1 4112 . . . . . . . . 9 (𝑥 = 𝑑 → (𝑥 ∖ I ) = (𝑑 ∖ I ))
1918dmeqd 5903 . . . . . . . 8 (𝑥 = 𝑑 → dom (𝑥 ∖ I ) = dom (𝑑 ∖ I ))
2017, 19disji2 5125 . . . . . . 7 ((Disj 𝑥𝐴 dom (𝑥 ∖ I ) ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → (dom (𝑐 ∖ I ) ∩ dom (𝑑 ∖ I )) = ∅)
2114, 9, 11, 15, 20syl121anc 1373 . . . . . 6 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (dom (𝑐 ∖ I ) ∩ dom (𝑑 ∖ I )) = ∅)
225, 6, 10, 12, 21symgcom2 32802 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (𝑐𝑑) = (𝑑𝑐))
23 eqid 2728 . . . . . . 7 (+g𝑆) = (+g𝑆)
245, 6, 23symgov 19332 . . . . . 6 ((𝑐𝐵𝑑𝐵) → (𝑐(+g𝑆)𝑑) = (𝑐𝑑))
2510, 12, 24syl2anc 583 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (𝑐(+g𝑆)𝑑) = (𝑐𝑑))
265, 6, 23symgov 19332 . . . . . 6 ((𝑑𝐵𝑐𝐵) → (𝑑(+g𝑆)𝑐) = (𝑑𝑐))
2712, 10, 26syl2anc 583 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (𝑑(+g𝑆)𝑐) = (𝑑𝑐))
2822, 25, 273eqtr4d 2778 . . . 4 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐))
294, 28pm2.61dane 3025 . . 3 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐))
3029ralrimivva 3196 . 2 (𝜑 → ∀𝑐𝐴𝑑𝐴 (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐))
31 symgcntz.z . . . 4 𝑍 = (Cntz‘𝑆)
326, 23, 31sscntz 19271 . . 3 ((𝐴𝐵𝐴𝐵) → (𝐴 ⊆ (𝑍𝐴) ↔ ∀𝑐𝐴𝑑𝐴 (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐)))
337, 7, 32syl2anc 583 . 2 (𝜑 → (𝐴 ⊆ (𝑍𝐴) ↔ ∀𝑐𝐴𝑑𝐴 (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐)))
3430, 33mpbird 257 1 (𝜑𝐴 ⊆ (𝑍𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wne 2936  wral 3057  cdif 3942  cin 3944  wss 3945  c0 4319  Disj wdisj 5108   I cid 5570  dom cdm 5673  ccom 5677  cfv 6543  (class class class)co 7415  Basecbs 17174  +gcplusg 17227  Cntzccntz 19260  SymGrpcsymg 19315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-iun 4994  df-disj 5109  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-map 8841  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-uz 12848  df-fz 13512  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-tset 17246  df-efmnd 18815  df-cntz 19262  df-symg 19316
This theorem is referenced by:  tocyccntz  32860
  Copyright terms: Public domain W3C validator