Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > symgcntz | Structured version Visualization version GIF version |
Description: All elements of a (finite) set of permutations commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
Ref | Expression |
---|---|
symgcntz.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
symgcntz.b | ⊢ 𝐵 = (Base‘𝑆) |
symgcntz.z | ⊢ 𝑍 = (Cntz‘𝑆) |
symgcntz.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
symgcntz.1 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 dom (𝑥 ∖ I )) |
Ref | Expression |
---|---|
symgcntz | ⊢ (𝜑 → 𝐴 ⊆ (𝑍‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 = 𝑑) → 𝑐 = 𝑑) | |
2 | 1 | oveq1d 7270 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 = 𝑑) → (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑑)) |
3 | 1 | oveq2d 7271 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 = 𝑑) → (𝑑(+g‘𝑆)𝑐) = (𝑑(+g‘𝑆)𝑑)) |
4 | 2, 3 | eqtr4d 2781 | . . . 4 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 = 𝑑) → (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐)) |
5 | symgcntz.s | . . . . . 6 ⊢ 𝑆 = (SymGrp‘𝐷) | |
6 | symgcntz.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
7 | symgcntz.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
8 | 7 | ad2antrr 722 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝐴 ⊆ 𝐵) |
9 | simplrl 773 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑐 ∈ 𝐴) | |
10 | 8, 9 | sseldd 3918 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑐 ∈ 𝐵) |
11 | simplrr 774 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑑 ∈ 𝐴) | |
12 | 8, 11 | sseldd 3918 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑑 ∈ 𝐵) |
13 | symgcntz.1 | . . . . . . . 8 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 dom (𝑥 ∖ I )) | |
14 | 13 | ad2antrr 722 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → Disj 𝑥 ∈ 𝐴 dom (𝑥 ∖ I )) |
15 | simpr 484 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑐 ≠ 𝑑) | |
16 | difeq1 4046 | . . . . . . . . 9 ⊢ (𝑥 = 𝑐 → (𝑥 ∖ I ) = (𝑐 ∖ I )) | |
17 | 16 | dmeqd 5803 | . . . . . . . 8 ⊢ (𝑥 = 𝑐 → dom (𝑥 ∖ I ) = dom (𝑐 ∖ I )) |
18 | difeq1 4046 | . . . . . . . . 9 ⊢ (𝑥 = 𝑑 → (𝑥 ∖ I ) = (𝑑 ∖ I )) | |
19 | 18 | dmeqd 5803 | . . . . . . . 8 ⊢ (𝑥 = 𝑑 → dom (𝑥 ∖ I ) = dom (𝑑 ∖ I )) |
20 | 17, 19 | disji2 5052 | . . . . . . 7 ⊢ ((Disj 𝑥 ∈ 𝐴 dom (𝑥 ∖ I ) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ 𝑐 ≠ 𝑑) → (dom (𝑐 ∖ I ) ∩ dom (𝑑 ∖ I )) = ∅) |
21 | 14, 9, 11, 15, 20 | syl121anc 1373 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (dom (𝑐 ∖ I ) ∩ dom (𝑑 ∖ I )) = ∅) |
22 | 5, 6, 10, 12, 21 | symgcom2 31255 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (𝑐 ∘ 𝑑) = (𝑑 ∘ 𝑐)) |
23 | eqid 2738 | . . . . . . 7 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
24 | 5, 6, 23 | symgov 18906 | . . . . . 6 ⊢ ((𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵) → (𝑐(+g‘𝑆)𝑑) = (𝑐 ∘ 𝑑)) |
25 | 10, 12, 24 | syl2anc 583 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (𝑐(+g‘𝑆)𝑑) = (𝑐 ∘ 𝑑)) |
26 | 5, 6, 23 | symgov 18906 | . . . . . 6 ⊢ ((𝑑 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) → (𝑑(+g‘𝑆)𝑐) = (𝑑 ∘ 𝑐)) |
27 | 12, 10, 26 | syl2anc 583 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (𝑑(+g‘𝑆)𝑐) = (𝑑 ∘ 𝑐)) |
28 | 22, 25, 27 | 3eqtr4d 2788 | . . . 4 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐)) |
29 | 4, 28 | pm2.61dane 3031 | . . 3 ⊢ ((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐)) |
30 | 29 | ralrimivva 3114 | . 2 ⊢ (𝜑 → ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐)) |
31 | symgcntz.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝑆) | |
32 | 6, 23, 31 | sscntz 18847 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ⊆ (𝑍‘𝐴) ↔ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐))) |
33 | 7, 7, 32 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐴 ⊆ (𝑍‘𝐴) ↔ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐))) |
34 | 30, 33 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝑍‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 Disj wdisj 5035 I cid 5479 dom cdm 5580 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Cntzccntz 18836 SymGrpcsymg 18889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-tset 16907 df-efmnd 18423 df-cntz 18838 df-symg 18890 |
This theorem is referenced by: tocyccntz 31313 |
Copyright terms: Public domain | W3C validator |