Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symgcntz Structured version   Visualization version   GIF version

Theorem symgcntz 31354
Description: All elements of a (finite) set of permutations commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Hypotheses
Ref Expression
symgcntz.s 𝑆 = (SymGrp‘𝐷)
symgcntz.b 𝐵 = (Base‘𝑆)
symgcntz.z 𝑍 = (Cntz‘𝑆)
symgcntz.a (𝜑𝐴𝐵)
symgcntz.1 (𝜑Disj 𝑥𝐴 dom (𝑥 ∖ I ))
Assertion
Ref Expression
symgcntz (𝜑𝐴 ⊆ (𝑍𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝑍(𝑥)

Proof of Theorem symgcntz
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . 6 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐 = 𝑑) → 𝑐 = 𝑑)
21oveq1d 7290 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐 = 𝑑) → (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑑))
31oveq2d 7291 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐 = 𝑑) → (𝑑(+g𝑆)𝑐) = (𝑑(+g𝑆)𝑑))
42, 3eqtr4d 2781 . . . 4 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐 = 𝑑) → (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐))
5 symgcntz.s . . . . . 6 𝑆 = (SymGrp‘𝐷)
6 symgcntz.b . . . . . 6 𝐵 = (Base‘𝑆)
7 symgcntz.a . . . . . . . 8 (𝜑𝐴𝐵)
87ad2antrr 723 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝐴𝐵)
9 simplrl 774 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑐𝐴)
108, 9sseldd 3922 . . . . . 6 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑐𝐵)
11 simplrr 775 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑑𝐴)
128, 11sseldd 3922 . . . . . 6 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑑𝐵)
13 symgcntz.1 . . . . . . . 8 (𝜑Disj 𝑥𝐴 dom (𝑥 ∖ I ))
1413ad2antrr 723 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → Disj 𝑥𝐴 dom (𝑥 ∖ I ))
15 simpr 485 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑐𝑑)
16 difeq1 4050 . . . . . . . . 9 (𝑥 = 𝑐 → (𝑥 ∖ I ) = (𝑐 ∖ I ))
1716dmeqd 5814 . . . . . . . 8 (𝑥 = 𝑐 → dom (𝑥 ∖ I ) = dom (𝑐 ∖ I ))
18 difeq1 4050 . . . . . . . . 9 (𝑥 = 𝑑 → (𝑥 ∖ I ) = (𝑑 ∖ I ))
1918dmeqd 5814 . . . . . . . 8 (𝑥 = 𝑑 → dom (𝑥 ∖ I ) = dom (𝑑 ∖ I ))
2017, 19disji2 5056 . . . . . . 7 ((Disj 𝑥𝐴 dom (𝑥 ∖ I ) ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → (dom (𝑐 ∖ I ) ∩ dom (𝑑 ∖ I )) = ∅)
2114, 9, 11, 15, 20syl121anc 1374 . . . . . 6 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (dom (𝑐 ∖ I ) ∩ dom (𝑑 ∖ I )) = ∅)
225, 6, 10, 12, 21symgcom2 31353 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (𝑐𝑑) = (𝑑𝑐))
23 eqid 2738 . . . . . . 7 (+g𝑆) = (+g𝑆)
245, 6, 23symgov 18991 . . . . . 6 ((𝑐𝐵𝑑𝐵) → (𝑐(+g𝑆)𝑑) = (𝑐𝑑))
2510, 12, 24syl2anc 584 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (𝑐(+g𝑆)𝑑) = (𝑐𝑑))
265, 6, 23symgov 18991 . . . . . 6 ((𝑑𝐵𝑐𝐵) → (𝑑(+g𝑆)𝑐) = (𝑑𝑐))
2712, 10, 26syl2anc 584 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (𝑑(+g𝑆)𝑐) = (𝑑𝑐))
2822, 25, 273eqtr4d 2788 . . . 4 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐))
294, 28pm2.61dane 3032 . . 3 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐))
3029ralrimivva 3123 . 2 (𝜑 → ∀𝑐𝐴𝑑𝐴 (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐))
31 symgcntz.z . . . 4 𝑍 = (Cntz‘𝑆)
326, 23, 31sscntz 18932 . . 3 ((𝐴𝐵𝐴𝐵) → (𝐴 ⊆ (𝑍𝐴) ↔ ∀𝑐𝐴𝑑𝐴 (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐)))
337, 7, 32syl2anc 584 . 2 (𝜑 → (𝐴 ⊆ (𝑍𝐴) ↔ ∀𝑐𝐴𝑑𝐴 (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐)))
3430, 33mpbird 256 1 (𝜑𝐴 ⊆ (𝑍𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  cdif 3884  cin 3886  wss 3887  c0 4256  Disj wdisj 5039   I cid 5488  dom cdm 5589  ccom 5593  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Cntzccntz 18921  SymGrpcsymg 18974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-tset 16981  df-efmnd 18508  df-cntz 18923  df-symg 18975
This theorem is referenced by:  tocyccntz  31411
  Copyright terms: Public domain W3C validator