| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > symgcntz | Structured version Visualization version GIF version | ||
| Description: All elements of a (finite) set of permutations commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
| Ref | Expression |
|---|---|
| symgcntz.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| symgcntz.b | ⊢ 𝐵 = (Base‘𝑆) |
| symgcntz.z | ⊢ 𝑍 = (Cntz‘𝑆) |
| symgcntz.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| symgcntz.1 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 dom (𝑥 ∖ I )) |
| Ref | Expression |
|---|---|
| symgcntz | ⊢ (𝜑 → 𝐴 ⊆ (𝑍‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 = 𝑑) → 𝑐 = 𝑑) | |
| 2 | 1 | oveq1d 7428 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 = 𝑑) → (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑑)) |
| 3 | 1 | oveq2d 7429 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 = 𝑑) → (𝑑(+g‘𝑆)𝑐) = (𝑑(+g‘𝑆)𝑑)) |
| 4 | 2, 3 | eqtr4d 2772 | . . . 4 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 = 𝑑) → (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐)) |
| 5 | symgcntz.s | . . . . . 6 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 6 | symgcntz.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 7 | symgcntz.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 8 | 7 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝐴 ⊆ 𝐵) |
| 9 | simplrl 776 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑐 ∈ 𝐴) | |
| 10 | 8, 9 | sseldd 3964 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑐 ∈ 𝐵) |
| 11 | simplrr 777 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑑 ∈ 𝐴) | |
| 12 | 8, 11 | sseldd 3964 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑑 ∈ 𝐵) |
| 13 | symgcntz.1 | . . . . . . . 8 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 dom (𝑥 ∖ I )) | |
| 14 | 13 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → Disj 𝑥 ∈ 𝐴 dom (𝑥 ∖ I )) |
| 15 | simpr 484 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑐 ≠ 𝑑) | |
| 16 | difeq1 4099 | . . . . . . . . 9 ⊢ (𝑥 = 𝑐 → (𝑥 ∖ I ) = (𝑐 ∖ I )) | |
| 17 | 16 | dmeqd 5896 | . . . . . . . 8 ⊢ (𝑥 = 𝑐 → dom (𝑥 ∖ I ) = dom (𝑐 ∖ I )) |
| 18 | difeq1 4099 | . . . . . . . . 9 ⊢ (𝑥 = 𝑑 → (𝑥 ∖ I ) = (𝑑 ∖ I )) | |
| 19 | 18 | dmeqd 5896 | . . . . . . . 8 ⊢ (𝑥 = 𝑑 → dom (𝑥 ∖ I ) = dom (𝑑 ∖ I )) |
| 20 | 17, 19 | disji2 5107 | . . . . . . 7 ⊢ ((Disj 𝑥 ∈ 𝐴 dom (𝑥 ∖ I ) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ 𝑐 ≠ 𝑑) → (dom (𝑐 ∖ I ) ∩ dom (𝑑 ∖ I )) = ∅) |
| 21 | 14, 9, 11, 15, 20 | syl121anc 1376 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (dom (𝑐 ∖ I ) ∩ dom (𝑑 ∖ I )) = ∅) |
| 22 | 5, 6, 10, 12, 21 | symgcom2 33043 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (𝑐 ∘ 𝑑) = (𝑑 ∘ 𝑐)) |
| 23 | eqid 2734 | . . . . . . 7 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 24 | 5, 6, 23 | symgov 19369 | . . . . . 6 ⊢ ((𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵) → (𝑐(+g‘𝑆)𝑑) = (𝑐 ∘ 𝑑)) |
| 25 | 10, 12, 24 | syl2anc 584 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (𝑐(+g‘𝑆)𝑑) = (𝑐 ∘ 𝑑)) |
| 26 | 5, 6, 23 | symgov 19369 | . . . . . 6 ⊢ ((𝑑 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) → (𝑑(+g‘𝑆)𝑐) = (𝑑 ∘ 𝑐)) |
| 27 | 12, 10, 26 | syl2anc 584 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (𝑑(+g‘𝑆)𝑐) = (𝑑 ∘ 𝑐)) |
| 28 | 22, 25, 27 | 3eqtr4d 2779 | . . . 4 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐)) |
| 29 | 4, 28 | pm2.61dane 3018 | . . 3 ⊢ ((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐)) |
| 30 | 29 | ralrimivva 3189 | . 2 ⊢ (𝜑 → ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐)) |
| 31 | symgcntz.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝑆) | |
| 32 | 6, 23, 31 | sscntz 19313 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ⊆ (𝑍‘𝐴) ↔ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐))) |
| 33 | 7, 7, 32 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ⊆ (𝑍‘𝐴) ↔ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐))) |
| 34 | 30, 33 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝑍‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∖ cdif 3928 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 Disj wdisj 5090 I cid 5557 dom cdm 5665 ∘ ccom 5669 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 +gcplusg 17273 Cntzccntz 19302 SymGrpcsymg 19354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-disj 5091 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-tset 17292 df-efmnd 18851 df-cntz 19304 df-symg 19355 |
| This theorem is referenced by: tocyccntz 33103 |
| Copyright terms: Public domain | W3C validator |