Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > symgcntz | Structured version Visualization version GIF version |
Description: All elements of a (finite) set of permutations commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
Ref | Expression |
---|---|
symgcntz.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
symgcntz.b | ⊢ 𝐵 = (Base‘𝑆) |
symgcntz.z | ⊢ 𝑍 = (Cntz‘𝑆) |
symgcntz.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
symgcntz.1 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 dom (𝑥 ∖ I )) |
Ref | Expression |
---|---|
symgcntz | ⊢ (𝜑 → 𝐴 ⊆ (𝑍‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 = 𝑑) → 𝑐 = 𝑑) | |
2 | 1 | oveq1d 7290 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 = 𝑑) → (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑑)) |
3 | 1 | oveq2d 7291 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 = 𝑑) → (𝑑(+g‘𝑆)𝑐) = (𝑑(+g‘𝑆)𝑑)) |
4 | 2, 3 | eqtr4d 2781 | . . . 4 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 = 𝑑) → (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐)) |
5 | symgcntz.s | . . . . . 6 ⊢ 𝑆 = (SymGrp‘𝐷) | |
6 | symgcntz.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
7 | symgcntz.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
8 | 7 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝐴 ⊆ 𝐵) |
9 | simplrl 774 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑐 ∈ 𝐴) | |
10 | 8, 9 | sseldd 3922 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑐 ∈ 𝐵) |
11 | simplrr 775 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑑 ∈ 𝐴) | |
12 | 8, 11 | sseldd 3922 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑑 ∈ 𝐵) |
13 | symgcntz.1 | . . . . . . . 8 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 dom (𝑥 ∖ I )) | |
14 | 13 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → Disj 𝑥 ∈ 𝐴 dom (𝑥 ∖ I )) |
15 | simpr 485 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑐 ≠ 𝑑) | |
16 | difeq1 4050 | . . . . . . . . 9 ⊢ (𝑥 = 𝑐 → (𝑥 ∖ I ) = (𝑐 ∖ I )) | |
17 | 16 | dmeqd 5814 | . . . . . . . 8 ⊢ (𝑥 = 𝑐 → dom (𝑥 ∖ I ) = dom (𝑐 ∖ I )) |
18 | difeq1 4050 | . . . . . . . . 9 ⊢ (𝑥 = 𝑑 → (𝑥 ∖ I ) = (𝑑 ∖ I )) | |
19 | 18 | dmeqd 5814 | . . . . . . . 8 ⊢ (𝑥 = 𝑑 → dom (𝑥 ∖ I ) = dom (𝑑 ∖ I )) |
20 | 17, 19 | disji2 5056 | . . . . . . 7 ⊢ ((Disj 𝑥 ∈ 𝐴 dom (𝑥 ∖ I ) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ 𝑐 ≠ 𝑑) → (dom (𝑐 ∖ I ) ∩ dom (𝑑 ∖ I )) = ∅) |
21 | 14, 9, 11, 15, 20 | syl121anc 1374 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (dom (𝑐 ∖ I ) ∩ dom (𝑑 ∖ I )) = ∅) |
22 | 5, 6, 10, 12, 21 | symgcom2 31353 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (𝑐 ∘ 𝑑) = (𝑑 ∘ 𝑐)) |
23 | eqid 2738 | . . . . . . 7 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
24 | 5, 6, 23 | symgov 18991 | . . . . . 6 ⊢ ((𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵) → (𝑐(+g‘𝑆)𝑑) = (𝑐 ∘ 𝑑)) |
25 | 10, 12, 24 | syl2anc 584 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (𝑐(+g‘𝑆)𝑑) = (𝑐 ∘ 𝑑)) |
26 | 5, 6, 23 | symgov 18991 | . . . . . 6 ⊢ ((𝑑 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) → (𝑑(+g‘𝑆)𝑐) = (𝑑 ∘ 𝑐)) |
27 | 12, 10, 26 | syl2anc 584 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (𝑑(+g‘𝑆)𝑐) = (𝑑 ∘ 𝑐)) |
28 | 22, 25, 27 | 3eqtr4d 2788 | . . . 4 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐)) |
29 | 4, 28 | pm2.61dane 3032 | . . 3 ⊢ ((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐)) |
30 | 29 | ralrimivva 3123 | . 2 ⊢ (𝜑 → ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐)) |
31 | symgcntz.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝑆) | |
32 | 6, 23, 31 | sscntz 18932 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ⊆ (𝑍‘𝐴) ↔ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐))) |
33 | 7, 7, 32 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ⊆ (𝑍‘𝐴) ↔ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐))) |
34 | 30, 33 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝑍‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 Disj wdisj 5039 I cid 5488 dom cdm 5589 ∘ ccom 5593 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Cntzccntz 18921 SymGrpcsymg 18974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-tset 16981 df-efmnd 18508 df-cntz 18923 df-symg 18975 |
This theorem is referenced by: tocyccntz 31411 |
Copyright terms: Public domain | W3C validator |