![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > symgcntz | Structured version Visualization version GIF version |
Description: All elements of a (finite) set of permutations commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
Ref | Expression |
---|---|
symgcntz.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
symgcntz.b | ⊢ 𝐵 = (Base‘𝑆) |
symgcntz.z | ⊢ 𝑍 = (Cntz‘𝑆) |
symgcntz.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
symgcntz.1 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 dom (𝑥 ∖ I )) |
Ref | Expression |
---|---|
symgcntz | ⊢ (𝜑 → 𝐴 ⊆ (𝑍‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 = 𝑑) → 𝑐 = 𝑑) | |
2 | 1 | oveq1d 7453 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 = 𝑑) → (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑑)) |
3 | 1 | oveq2d 7454 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 = 𝑑) → (𝑑(+g‘𝑆)𝑐) = (𝑑(+g‘𝑆)𝑑)) |
4 | 2, 3 | eqtr4d 2780 | . . . 4 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 = 𝑑) → (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐)) |
5 | symgcntz.s | . . . . . 6 ⊢ 𝑆 = (SymGrp‘𝐷) | |
6 | symgcntz.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
7 | symgcntz.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
8 | 7 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝐴 ⊆ 𝐵) |
9 | simplrl 777 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑐 ∈ 𝐴) | |
10 | 8, 9 | sseldd 3999 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑐 ∈ 𝐵) |
11 | simplrr 778 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑑 ∈ 𝐴) | |
12 | 8, 11 | sseldd 3999 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑑 ∈ 𝐵) |
13 | symgcntz.1 | . . . . . . . 8 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 dom (𝑥 ∖ I )) | |
14 | 13 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → Disj 𝑥 ∈ 𝐴 dom (𝑥 ∖ I )) |
15 | simpr 484 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → 𝑐 ≠ 𝑑) | |
16 | difeq1 4132 | . . . . . . . . 9 ⊢ (𝑥 = 𝑐 → (𝑥 ∖ I ) = (𝑐 ∖ I )) | |
17 | 16 | dmeqd 5923 | . . . . . . . 8 ⊢ (𝑥 = 𝑐 → dom (𝑥 ∖ I ) = dom (𝑐 ∖ I )) |
18 | difeq1 4132 | . . . . . . . . 9 ⊢ (𝑥 = 𝑑 → (𝑥 ∖ I ) = (𝑑 ∖ I )) | |
19 | 18 | dmeqd 5923 | . . . . . . . 8 ⊢ (𝑥 = 𝑑 → dom (𝑥 ∖ I ) = dom (𝑑 ∖ I )) |
20 | 17, 19 | disji2 5135 | . . . . . . 7 ⊢ ((Disj 𝑥 ∈ 𝐴 dom (𝑥 ∖ I ) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ 𝑐 ≠ 𝑑) → (dom (𝑐 ∖ I ) ∩ dom (𝑑 ∖ I )) = ∅) |
21 | 14, 9, 11, 15, 20 | syl121anc 1376 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (dom (𝑐 ∖ I ) ∩ dom (𝑑 ∖ I )) = ∅) |
22 | 5, 6, 10, 12, 21 | symgcom2 33119 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (𝑐 ∘ 𝑑) = (𝑑 ∘ 𝑐)) |
23 | eqid 2737 | . . . . . . 7 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
24 | 5, 6, 23 | symgov 19425 | . . . . . 6 ⊢ ((𝑐 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵) → (𝑐(+g‘𝑆)𝑑) = (𝑐 ∘ 𝑑)) |
25 | 10, 12, 24 | syl2anc 584 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (𝑐(+g‘𝑆)𝑑) = (𝑐 ∘ 𝑑)) |
26 | 5, 6, 23 | symgov 19425 | . . . . . 6 ⊢ ((𝑑 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) → (𝑑(+g‘𝑆)𝑐) = (𝑑 ∘ 𝑐)) |
27 | 12, 10, 26 | syl2anc 584 | . . . . 5 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (𝑑(+g‘𝑆)𝑐) = (𝑑 ∘ 𝑐)) |
28 | 22, 25, 27 | 3eqtr4d 2787 | . . . 4 ⊢ (((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) ∧ 𝑐 ≠ 𝑑) → (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐)) |
29 | 4, 28 | pm2.61dane 3029 | . . 3 ⊢ ((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐)) |
30 | 29 | ralrimivva 3202 | . 2 ⊢ (𝜑 → ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐)) |
31 | symgcntz.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝑆) | |
32 | 6, 23, 31 | sscntz 19366 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ⊆ (𝑍‘𝐴) ↔ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐))) |
33 | 7, 7, 32 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ⊆ (𝑍‘𝐴) ↔ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐(+g‘𝑆)𝑑) = (𝑑(+g‘𝑆)𝑐))) |
34 | 30, 33 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ⊆ (𝑍‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∖ cdif 3963 ∩ cin 3965 ⊆ wss 3966 ∅c0 4342 Disj wdisj 5118 I cid 5586 dom cdm 5693 ∘ ccom 5697 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 +gcplusg 17307 Cntzccntz 19355 SymGrpcsymg 19410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-iun 5001 df-disj 5119 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-uz 12886 df-fz 13554 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-tset 17326 df-efmnd 18904 df-cntz 19357 df-symg 19411 |
This theorem is referenced by: tocyccntz 33179 |
Copyright terms: Public domain | W3C validator |