Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symgcntz Structured version   Visualization version   GIF version

Theorem symgcntz 33120
Description: All elements of a (finite) set of permutations commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Hypotheses
Ref Expression
symgcntz.s 𝑆 = (SymGrp‘𝐷)
symgcntz.b 𝐵 = (Base‘𝑆)
symgcntz.z 𝑍 = (Cntz‘𝑆)
symgcntz.a (𝜑𝐴𝐵)
symgcntz.1 (𝜑Disj 𝑥𝐴 dom (𝑥 ∖ I ))
Assertion
Ref Expression
symgcntz (𝜑𝐴 ⊆ (𝑍𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝑍(𝑥)

Proof of Theorem symgcntz
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐 = 𝑑) → 𝑐 = 𝑑)
21oveq1d 7453 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐 = 𝑑) → (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑑))
31oveq2d 7454 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐 = 𝑑) → (𝑑(+g𝑆)𝑐) = (𝑑(+g𝑆)𝑑))
42, 3eqtr4d 2780 . . . 4 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐 = 𝑑) → (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐))
5 symgcntz.s . . . . . 6 𝑆 = (SymGrp‘𝐷)
6 symgcntz.b . . . . . 6 𝐵 = (Base‘𝑆)
7 symgcntz.a . . . . . . . 8 (𝜑𝐴𝐵)
87ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝐴𝐵)
9 simplrl 777 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑐𝐴)
108, 9sseldd 3999 . . . . . 6 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑐𝐵)
11 simplrr 778 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑑𝐴)
128, 11sseldd 3999 . . . . . 6 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑑𝐵)
13 symgcntz.1 . . . . . . . 8 (𝜑Disj 𝑥𝐴 dom (𝑥 ∖ I ))
1413ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → Disj 𝑥𝐴 dom (𝑥 ∖ I ))
15 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑐𝑑)
16 difeq1 4132 . . . . . . . . 9 (𝑥 = 𝑐 → (𝑥 ∖ I ) = (𝑐 ∖ I ))
1716dmeqd 5923 . . . . . . . 8 (𝑥 = 𝑐 → dom (𝑥 ∖ I ) = dom (𝑐 ∖ I ))
18 difeq1 4132 . . . . . . . . 9 (𝑥 = 𝑑 → (𝑥 ∖ I ) = (𝑑 ∖ I ))
1918dmeqd 5923 . . . . . . . 8 (𝑥 = 𝑑 → dom (𝑥 ∖ I ) = dom (𝑑 ∖ I ))
2017, 19disji2 5135 . . . . . . 7 ((Disj 𝑥𝐴 dom (𝑥 ∖ I ) ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → (dom (𝑐 ∖ I ) ∩ dom (𝑑 ∖ I )) = ∅)
2114, 9, 11, 15, 20syl121anc 1376 . . . . . 6 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (dom (𝑐 ∖ I ) ∩ dom (𝑑 ∖ I )) = ∅)
225, 6, 10, 12, 21symgcom2 33119 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (𝑐𝑑) = (𝑑𝑐))
23 eqid 2737 . . . . . . 7 (+g𝑆) = (+g𝑆)
245, 6, 23symgov 19425 . . . . . 6 ((𝑐𝐵𝑑𝐵) → (𝑐(+g𝑆)𝑑) = (𝑐𝑑))
2510, 12, 24syl2anc 584 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (𝑐(+g𝑆)𝑑) = (𝑐𝑑))
265, 6, 23symgov 19425 . . . . . 6 ((𝑑𝐵𝑐𝐵) → (𝑑(+g𝑆)𝑐) = (𝑑𝑐))
2712, 10, 26syl2anc 584 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (𝑑(+g𝑆)𝑐) = (𝑑𝑐))
2822, 25, 273eqtr4d 2787 . . . 4 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐))
294, 28pm2.61dane 3029 . . 3 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐))
3029ralrimivva 3202 . 2 (𝜑 → ∀𝑐𝐴𝑑𝐴 (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐))
31 symgcntz.z . . . 4 𝑍 = (Cntz‘𝑆)
326, 23, 31sscntz 19366 . . 3 ((𝐴𝐵𝐴𝐵) → (𝐴 ⊆ (𝑍𝐴) ↔ ∀𝑐𝐴𝑑𝐴 (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐)))
337, 7, 32syl2anc 584 . 2 (𝜑 → (𝐴 ⊆ (𝑍𝐴) ↔ ∀𝑐𝐴𝑑𝐴 (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐)))
3430, 33mpbird 257 1 (𝜑𝐴 ⊆ (𝑍𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  wne 2940  wral 3061  cdif 3963  cin 3965  wss 3966  c0 4342  Disj wdisj 5118   I cid 5586  dom cdm 5693  ccom 5697  cfv 6569  (class class class)co 7438  Basecbs 17254  +gcplusg 17307  Cntzccntz 19355  SymGrpcsymg 19410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-iun 5001  df-disj 5119  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-er 8753  df-map 8876  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-z 12621  df-uz 12886  df-fz 13554  df-struct 17190  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-ress 17284  df-plusg 17320  df-tset 17326  df-efmnd 18904  df-cntz 19357  df-symg 19411
This theorem is referenced by:  tocyccntz  33179
  Copyright terms: Public domain W3C validator