MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe5lem Structured version   Visualization version   GIF version

Theorem mplcoe5lem 20240
Description: Lemma for mplcoe4 20275. (Contributed by AV, 7-Oct-2019.)
Hypotheses
Ref Expression
mplcoe1.p 𝑃 = (𝐼 mPoly 𝑅)
mplcoe1.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplcoe1.z 0 = (0g𝑅)
mplcoe1.o 1 = (1r𝑅)
mplcoe1.i (𝜑𝐼𝑊)
mplcoe2.g 𝐺 = (mulGrp‘𝑃)
mplcoe2.m = (.g𝐺)
mplcoe2.v 𝑉 = (𝐼 mVar 𝑅)
mplcoe5.r (𝜑𝑅 ∈ Ring)
mplcoe5.y (𝜑𝑌𝐷)
mplcoe5.c (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
mplcoe5.s (𝜑𝑆𝐼)
Assertion
Ref Expression
mplcoe5lem (𝜑 → ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Distinct variable groups:   𝑥,𝑘, ,𝑦   1 ,𝑘   𝑥,𝑦, 1   𝑘,𝐺,𝑥   𝑓,𝑘,𝑥,𝑦,𝐼   𝜑,𝑘,𝑥,𝑦   𝑅,𝑓,𝑦   𝐷,𝑘,𝑥,𝑦   𝑃,𝑘,𝑥   𝑘,𝑉,𝑥   0 ,𝑓,𝑘,𝑥,𝑦   𝑓,𝑌,𝑘,𝑥,𝑦   𝑘,𝑊,𝑦   𝑦,𝐺   𝑦,𝑉   𝑦,   𝑆,𝑘,𝑦,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑥,𝑘)   𝑆(𝑓)   1 (𝑓)   (𝑓)   𝐺(𝑓)   𝑉(𝑓)   𝑊(𝑥,𝑓)

Proof of Theorem mplcoe5lem
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 vex 3496 . . . . . 6 𝑥 ∈ V
2 eqid 2819 . . . . . . 7 (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))
32elrnmpt 5821 . . . . . 6 (𝑥 ∈ V → (𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ↔ ∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘))))
41, 3mp1i 13 . . . . 5 (𝜑 → (𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ↔ ∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘))))
5 vex 3496 . . . . . . . 8 𝑦 ∈ V
62elrnmpt 5821 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ↔ ∃𝑘𝑆 𝑦 = ((𝑌𝑘) (𝑉𝑘))))
75, 6mp1i 13 . . . . . . 7 (𝜑 → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ↔ ∃𝑘𝑆 𝑦 = ((𝑌𝑘) (𝑉𝑘))))
8 fveq2 6663 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑌𝑘) = (𝑌𝑙))
9 fveq2 6663 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑉𝑘) = (𝑉𝑙))
108, 9oveq12d 7166 . . . . . . . . . 10 (𝑘 = 𝑙 → ((𝑌𝑘) (𝑉𝑘)) = ((𝑌𝑙) (𝑉𝑙)))
1110eqeq2d 2830 . . . . . . . . 9 (𝑘 = 𝑙 → (𝑦 = ((𝑌𝑘) (𝑉𝑘)) ↔ 𝑦 = ((𝑌𝑙) (𝑉𝑙))))
1211cbvrexvw 3449 . . . . . . . 8 (∃𝑘𝑆 𝑦 = ((𝑌𝑘) (𝑉𝑘)) ↔ ∃𝑙𝑆 𝑦 = ((𝑌𝑙) (𝑉𝑙)))
13 eqid 2819 . . . . . . . . . . . . . 14 (Base‘𝑃) = (Base‘𝑃)
14 mplcoe2.g . . . . . . . . . . . . . . . 16 𝐺 = (mulGrp‘𝑃)
15 eqid 2819 . . . . . . . . . . . . . . . 16 (.r𝑃) = (.r𝑃)
1614, 15mgpplusg 19235 . . . . . . . . . . . . . . 15 (.r𝑃) = (+g𝐺)
1716eqcomi 2828 . . . . . . . . . . . . . 14 (+g𝐺) = (.r𝑃)
18 mplcoe2.m . . . . . . . . . . . . . 14 = (.g𝐺)
19 mplcoe1.i . . . . . . . . . . . . . . . . . 18 (𝜑𝐼𝑊)
20 mplcoe5.r . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ∈ Ring)
21 mplcoe1.p . . . . . . . . . . . . . . . . . . 19 𝑃 = (𝐼 mPoly 𝑅)
2221mplring 20224 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑊𝑅 ∈ Ring) → 𝑃 ∈ Ring)
2319, 20, 22syl2anc 586 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ Ring)
24 ringsrg 19331 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Ring → 𝑃 ∈ SRing)
2523, 24syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ SRing)
2625adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑙𝑆) → 𝑃 ∈ SRing)
2726adantr 483 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → 𝑃 ∈ SRing)
2814ringmgp 19295 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Ring → 𝐺 ∈ Mnd)
2923, 28syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ∈ Mnd)
3029adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑙𝑆) → 𝐺 ∈ Mnd)
31 mplcoe5.s . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆𝐼)
3231sseld 3964 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑙𝑆𝑙𝐼))
3332imdistani 571 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝑆) → (𝜑𝑙𝐼))
34 mplcoe5.y . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌𝐷)
35 mplcoe1.d . . . . . . . . . . . . . . . . . . . . . 22 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
3635psrbag 20136 . . . . . . . . . . . . . . . . . . . . 21 (𝐼𝑊 → (𝑌𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin)))
3719, 36syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑌𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin)))
3834, 37mpbid 234 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin))
3938simpld 497 . . . . . . . . . . . . . . . . . 18 (𝜑𝑌:𝐼⟶ℕ0)
4039ffvelrnda 6844 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝐼) → (𝑌𝑙) ∈ ℕ0)
4133, 40syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑙𝑆) → (𝑌𝑙) ∈ ℕ0)
42 mplcoe2.v . . . . . . . . . . . . . . . . 17 𝑉 = (𝐼 mVar 𝑅)
4319adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝑆) → 𝐼𝑊)
4420adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝑆) → 𝑅 ∈ Ring)
4531sselda 3965 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝑆) → 𝑙𝐼)
4621, 42, 13, 43, 44, 45mvrcl 20221 . . . . . . . . . . . . . . . 16 ((𝜑𝑙𝑆) → (𝑉𝑙) ∈ (Base‘𝑃))
4714, 13mgpbas 19237 . . . . . . . . . . . . . . . . 17 (Base‘𝑃) = (Base‘𝐺)
4847, 18mulgnn0cl 18236 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Mnd ∧ (𝑌𝑙) ∈ ℕ0 ∧ (𝑉𝑙) ∈ (Base‘𝑃)) → ((𝑌𝑙) (𝑉𝑙)) ∈ (Base‘𝑃))
4930, 41, 46, 48syl3anc 1365 . . . . . . . . . . . . . . 15 ((𝜑𝑙𝑆) → ((𝑌𝑙) (𝑉𝑙)) ∈ (Base‘𝑃))
5049adantr 483 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → ((𝑌𝑙) (𝑉𝑙)) ∈ (Base‘𝑃))
5119adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑆) → 𝐼𝑊)
5220adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑆) → 𝑅 ∈ Ring)
5331sselda 3965 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑆) → 𝑘𝐼)
5421, 42, 13, 51, 52, 53mvrcl 20221 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑆) → (𝑉𝑘) ∈ (Base‘𝑃))
5554adantlr 713 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑉𝑘) ∈ (Base‘𝑃))
5639ffvelrnda 6844 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐼) → (𝑌𝑘) ∈ ℕ0)
5753, 56syldan 593 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑆) → (𝑌𝑘) ∈ ℕ0)
5857adantlr 713 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑌𝑘) ∈ ℕ0)
5946adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑉𝑙) ∈ (Base‘𝑃))
6041adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑌𝑙) ∈ ℕ0)
61 mplcoe5.c . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
62 fveq2 6663 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑙 → (𝑉𝑥) = (𝑉𝑙))
6362oveq2d 7164 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑙 → ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑦)(+g𝐺)(𝑉𝑙)))
6462oveq1d 7163 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑙 → ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑦)))
6563, 64eqeq12d 2835 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑙 → (((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) ↔ ((𝑉𝑦)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑦))))
66 fveq2 6663 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑘 → (𝑉𝑦) = (𝑉𝑘))
6766oveq1d 7163 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑘 → ((𝑉𝑦)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑘)(+g𝐺)(𝑉𝑙)))
6866oveq2d 7164 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑘 → ((𝑉𝑙)(+g𝐺)(𝑉𝑦)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘)))
6967, 68eqeq12d 2835 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑘 → (((𝑉𝑦)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑦)) ↔ ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘))))
7065, 69rspc2v 3631 . . . . . . . . . . . . . . . . . . 19 ((𝑙𝐼𝑘𝐼) → (∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘))))
7145, 53anim12dan 620 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑙𝑆𝑘𝑆)) → (𝑙𝐼𝑘𝐼))
7270, 71syl11 33 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) → ((𝜑 ∧ (𝑙𝑆𝑘𝑆)) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘))))
7372expd 418 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) → (𝜑 → ((𝑙𝑆𝑘𝑆) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘)))))
7461, 73mpcom 38 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑙𝑆𝑘𝑆) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘))))
7574impl 458 . . . . . . . . . . . . . . 15 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘)))
7613, 17, 14, 18, 27, 55, 59, 60, 75srgpcomp 19274 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (((𝑌𝑙) (𝑉𝑙))(+g𝐺)(𝑉𝑘)) = ((𝑉𝑘)(+g𝐺)((𝑌𝑙) (𝑉𝑙))))
7713, 17, 14, 18, 27, 50, 55, 58, 76srgpcomp 19274 . . . . . . . . . . . . 13 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (((𝑌𝑘) (𝑉𝑘))(+g𝐺)((𝑌𝑙) (𝑉𝑙))) = (((𝑌𝑙) (𝑉𝑙))(+g𝐺)((𝑌𝑘) (𝑉𝑘))))
78 oveq12 7157 . . . . . . . . . . . . . 14 ((𝑥 = ((𝑌𝑘) (𝑉𝑘)) ∧ 𝑦 = ((𝑌𝑙) (𝑉𝑙))) → (𝑥(+g𝐺)𝑦) = (((𝑌𝑘) (𝑉𝑘))(+g𝐺)((𝑌𝑙) (𝑉𝑙))))
79 oveq12 7157 . . . . . . . . . . . . . . 15 ((𝑦 = ((𝑌𝑙) (𝑉𝑙)) ∧ 𝑥 = ((𝑌𝑘) (𝑉𝑘))) → (𝑦(+g𝐺)𝑥) = (((𝑌𝑙) (𝑉𝑙))(+g𝐺)((𝑌𝑘) (𝑉𝑘))))
8079ancoms 461 . . . . . . . . . . . . . 14 ((𝑥 = ((𝑌𝑘) (𝑉𝑘)) ∧ 𝑦 = ((𝑌𝑙) (𝑉𝑙))) → (𝑦(+g𝐺)𝑥) = (((𝑌𝑙) (𝑉𝑙))(+g𝐺)((𝑌𝑘) (𝑉𝑘))))
8178, 80eqeq12d 2835 . . . . . . . . . . . . 13 ((𝑥 = ((𝑌𝑘) (𝑉𝑘)) ∧ 𝑦 = ((𝑌𝑙) (𝑉𝑙))) → ((𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (((𝑌𝑘) (𝑉𝑘))(+g𝐺)((𝑌𝑙) (𝑉𝑙))) = (((𝑌𝑙) (𝑉𝑙))(+g𝐺)((𝑌𝑘) (𝑉𝑘)))))
8277, 81syl5ibrcom 249 . . . . . . . . . . . 12 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → ((𝑥 = ((𝑌𝑘) (𝑉𝑘)) ∧ 𝑦 = ((𝑌𝑙) (𝑉𝑙))) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
8382expd 418 . . . . . . . . . . 11 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑦 = ((𝑌𝑙) (𝑉𝑙)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8483rexlimdva 3282 . . . . . . . . . 10 ((𝜑𝑙𝑆) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑦 = ((𝑌𝑙) (𝑉𝑙)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8584com23 86 . . . . . . . . 9 ((𝜑𝑙𝑆) → (𝑦 = ((𝑌𝑙) (𝑉𝑙)) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8685rexlimdva 3282 . . . . . . . 8 (𝜑 → (∃𝑙𝑆 𝑦 = ((𝑌𝑙) (𝑉𝑙)) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8712, 86syl5bi 244 . . . . . . 7 (𝜑 → (∃𝑘𝑆 𝑦 = ((𝑌𝑘) (𝑉𝑘)) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
887, 87sylbid 242 . . . . . 6 (𝜑 → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8988com23 86 . . . . 5 (𝜑 → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
904, 89sylbid 242 . . . 4 (𝜑 → (𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
9190imp32 421 . . 3 ((𝜑 ∧ (𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ∧ 𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))))) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
9291ralrimivva 3189 . 2 (𝜑 → ∀𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))∀𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
9329adantr 483 . . . . . 6 ((𝜑𝑘𝑆) → 𝐺 ∈ Mnd)
9431sseld 3964 . . . . . . . 8 (𝜑 → (𝑘𝑆𝑘𝐼))
9594imdistani 571 . . . . . . 7 ((𝜑𝑘𝑆) → (𝜑𝑘𝐼))
9695, 56syl 17 . . . . . 6 ((𝜑𝑘𝑆) → (𝑌𝑘) ∈ ℕ0)
9754, 47eleqtrdi 2921 . . . . . 6 ((𝜑𝑘𝑆) → (𝑉𝑘) ∈ (Base‘𝐺))
98 eqid 2819 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
9998, 18mulgnn0cl 18236 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑌𝑘) ∈ ℕ0 ∧ (𝑉𝑘) ∈ (Base‘𝐺)) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝐺))
10093, 96, 97, 99syl3anc 1365 . . . . 5 ((𝜑𝑘𝑆) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝐺))
101100fmpttd 6872 . . . 4 (𝜑 → (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))):𝑆⟶(Base‘𝐺))
102101frnd 6514 . . 3 (𝜑 → ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ (Base‘𝐺))
103 eqid 2819 . . . 4 (+g𝐺) = (+g𝐺)
104 eqid 2819 . . . 4 (Cntz‘𝐺) = (Cntz‘𝐺)
10598, 103, 104sscntz 18448 . . 3 ((ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ (Base‘𝐺) ∧ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ (Base‘𝐺)) → (ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ ∀𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))∀𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
106102, 102, 105syl2anc 586 . 2 (𝜑 → (ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ ∀𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))∀𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
10792, 106mpbird 259 1 (𝜑 → ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1530  wcel 2107  wral 3136  wrex 3137  {crab 3140  Vcvv 3493  wss 3934  cmpt 5137  ccnv 5547  ran crn 5549  cima 5551  wf 6344  cfv 6348  (class class class)co 7148  m cmap 8398  Fincfn 8501  cn 11630  0cn0 11889  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  0gc0g 16705  Mndcmnd 17903  .gcmg 18216  Cntzccntz 18437  mulGrpcmgp 19231  1rcur 19243  SRingcsrg 19247  Ringcrg 19289   mVar cmvr 20124   mPoly cmpl 20125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-ofr 7402  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-seq 13362  df-hash 13683  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-srg 19248  df-ring 19291  df-subrg 19525  df-psr 20128  df-mvr 20129  df-mpl 20130
This theorem is referenced by:  mplcoe5  20241
  Copyright terms: Public domain W3C validator