MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe5lem Structured version   Visualization version   GIF version

Theorem mplcoe5lem 21967
Description: Lemma for mplcoe4 21999. (Contributed by AV, 7-Oct-2019.)
Hypotheses
Ref Expression
mplcoe1.p 𝑃 = (𝐼 mPoly 𝑅)
mplcoe1.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplcoe1.z 0 = (0g𝑅)
mplcoe1.o 1 = (1r𝑅)
mplcoe1.i (𝜑𝐼𝑊)
mplcoe2.g 𝐺 = (mulGrp‘𝑃)
mplcoe2.m = (.g𝐺)
mplcoe2.v 𝑉 = (𝐼 mVar 𝑅)
mplcoe5.r (𝜑𝑅 ∈ Ring)
mplcoe5.y (𝜑𝑌𝐷)
mplcoe5.c (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
mplcoe5.s (𝜑𝑆𝐼)
Assertion
Ref Expression
mplcoe5lem (𝜑 → ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Distinct variable groups:   𝑥,𝑘, ,𝑦   1 ,𝑘   𝑥,𝑦, 1   𝑘,𝐺,𝑥   𝑓,𝑘,𝑥,𝑦,𝐼   𝜑,𝑘,𝑥,𝑦   𝑅,𝑓,𝑦   𝐷,𝑘,𝑥,𝑦   𝑃,𝑘,𝑥   𝑘,𝑉,𝑥   0 ,𝑓,𝑘,𝑥,𝑦   𝑓,𝑌,𝑘,𝑥,𝑦   𝑘,𝑊,𝑦   𝑦,𝐺   𝑦,𝑉   𝑦,   𝑆,𝑘,𝑦,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑥,𝑘)   𝑆(𝑓)   1 (𝑓)   (𝑓)   𝐺(𝑓)   𝑉(𝑓)   𝑊(𝑥,𝑓)

Proof of Theorem mplcoe5lem
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 vex 3438 . . . . . 6 𝑥 ∈ V
2 eqid 2730 . . . . . . 7 (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))
32elrnmpt 5895 . . . . . 6 (𝑥 ∈ V → (𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ↔ ∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘))))
41, 3mp1i 13 . . . . 5 (𝜑 → (𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ↔ ∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘))))
5 vex 3438 . . . . . . . 8 𝑦 ∈ V
62elrnmpt 5895 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ↔ ∃𝑘𝑆 𝑦 = ((𝑌𝑘) (𝑉𝑘))))
75, 6mp1i 13 . . . . . . 7 (𝜑 → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ↔ ∃𝑘𝑆 𝑦 = ((𝑌𝑘) (𝑉𝑘))))
8 fveq2 6817 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑌𝑘) = (𝑌𝑙))
9 fveq2 6817 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑉𝑘) = (𝑉𝑙))
108, 9oveq12d 7359 . . . . . . . . . 10 (𝑘 = 𝑙 → ((𝑌𝑘) (𝑉𝑘)) = ((𝑌𝑙) (𝑉𝑙)))
1110eqeq2d 2741 . . . . . . . . 9 (𝑘 = 𝑙 → (𝑦 = ((𝑌𝑘) (𝑉𝑘)) ↔ 𝑦 = ((𝑌𝑙) (𝑉𝑙))))
1211cbvrexvw 3209 . . . . . . . 8 (∃𝑘𝑆 𝑦 = ((𝑌𝑘) (𝑉𝑘)) ↔ ∃𝑙𝑆 𝑦 = ((𝑌𝑙) (𝑉𝑙)))
13 eqid 2730 . . . . . . . . . . . . . 14 (Base‘𝑃) = (Base‘𝑃)
14 mplcoe2.g . . . . . . . . . . . . . . . 16 𝐺 = (mulGrp‘𝑃)
15 eqid 2730 . . . . . . . . . . . . . . . 16 (.r𝑃) = (.r𝑃)
1614, 15mgpplusg 20055 . . . . . . . . . . . . . . 15 (.r𝑃) = (+g𝐺)
1716eqcomi 2739 . . . . . . . . . . . . . 14 (+g𝐺) = (.r𝑃)
18 mplcoe2.m . . . . . . . . . . . . . 14 = (.g𝐺)
19 mplcoe1.p . . . . . . . . . . . . . . . . . 18 𝑃 = (𝐼 mPoly 𝑅)
20 mplcoe1.i . . . . . . . . . . . . . . . . . 18 (𝜑𝐼𝑊)
21 mplcoe5.r . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ∈ Ring)
2219, 20, 21mplringd 21953 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ Ring)
23 ringsrg 20208 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Ring → 𝑃 ∈ SRing)
2422, 23syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ SRing)
2524adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑙𝑆) → 𝑃 ∈ SRing)
2625adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → 𝑃 ∈ SRing)
2714, 13mgpbas 20056 . . . . . . . . . . . . . . . 16 (Base‘𝑃) = (Base‘𝐺)
2814ringmgp 20150 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Ring → 𝐺 ∈ Mnd)
2922, 28syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ∈ Mnd)
3029adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑙𝑆) → 𝐺 ∈ Mnd)
31 mplcoe5.s . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆𝐼)
3231sseld 3931 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑙𝑆𝑙𝐼))
3332imdistani 568 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝑆) → (𝜑𝑙𝐼))
34 mplcoe5.y . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌𝐷)
35 mplcoe1.d . . . . . . . . . . . . . . . . . . . . . 22 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
3635psrbag 21847 . . . . . . . . . . . . . . . . . . . . 21 (𝐼𝑊 → (𝑌𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin)))
3720, 36syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑌𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin)))
3834, 37mpbid 232 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin))
3938simpld 494 . . . . . . . . . . . . . . . . . 18 (𝜑𝑌:𝐼⟶ℕ0)
4039ffvelcdmda 7012 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝐼) → (𝑌𝑙) ∈ ℕ0)
4133, 40syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑙𝑆) → (𝑌𝑙) ∈ ℕ0)
42 mplcoe2.v . . . . . . . . . . . . . . . . 17 𝑉 = (𝐼 mVar 𝑅)
4320adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝑆) → 𝐼𝑊)
4421adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝑆) → 𝑅 ∈ Ring)
4531sselda 3932 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝑆) → 𝑙𝐼)
4619, 42, 13, 43, 44, 45mvrcl 21922 . . . . . . . . . . . . . . . 16 ((𝜑𝑙𝑆) → (𝑉𝑙) ∈ (Base‘𝑃))
4727, 18, 30, 41, 46mulgnn0cld 19000 . . . . . . . . . . . . . . 15 ((𝜑𝑙𝑆) → ((𝑌𝑙) (𝑉𝑙)) ∈ (Base‘𝑃))
4847adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → ((𝑌𝑙) (𝑉𝑙)) ∈ (Base‘𝑃))
4920adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑆) → 𝐼𝑊)
5021adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑆) → 𝑅 ∈ Ring)
5131sselda 3932 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑆) → 𝑘𝐼)
5219, 42, 13, 49, 50, 51mvrcl 21922 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑆) → (𝑉𝑘) ∈ (Base‘𝑃))
5352adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑉𝑘) ∈ (Base‘𝑃))
5439ffvelcdmda 7012 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐼) → (𝑌𝑘) ∈ ℕ0)
5551, 54syldan 591 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑆) → (𝑌𝑘) ∈ ℕ0)
5655adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑌𝑘) ∈ ℕ0)
5746adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑉𝑙) ∈ (Base‘𝑃))
5841adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑌𝑙) ∈ ℕ0)
59 mplcoe5.c . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
60 fveq2 6817 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑙 → (𝑉𝑥) = (𝑉𝑙))
6160oveq2d 7357 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑙 → ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑦)(+g𝐺)(𝑉𝑙)))
6260oveq1d 7356 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑙 → ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑦)))
6361, 62eqeq12d 2746 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑙 → (((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) ↔ ((𝑉𝑦)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑦))))
64 fveq2 6817 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑘 → (𝑉𝑦) = (𝑉𝑘))
6564oveq1d 7356 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑘 → ((𝑉𝑦)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑘)(+g𝐺)(𝑉𝑙)))
6664oveq2d 7357 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑘 → ((𝑉𝑙)(+g𝐺)(𝑉𝑦)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘)))
6765, 66eqeq12d 2746 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑘 → (((𝑉𝑦)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑦)) ↔ ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘))))
6863, 67rspc2v 3586 . . . . . . . . . . . . . . . . . . 19 ((𝑙𝐼𝑘𝐼) → (∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘))))
6945, 51anim12dan 619 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑙𝑆𝑘𝑆)) → (𝑙𝐼𝑘𝐼))
7068, 69syl11 33 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) → ((𝜑 ∧ (𝑙𝑆𝑘𝑆)) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘))))
7170expd 415 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) → (𝜑 → ((𝑙𝑆𝑘𝑆) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘)))))
7259, 71mpcom 38 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑙𝑆𝑘𝑆) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘))))
7372impl 455 . . . . . . . . . . . . . . 15 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘)))
7413, 17, 14, 18, 26, 53, 57, 58, 73srgpcomp 20129 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (((𝑌𝑙) (𝑉𝑙))(+g𝐺)(𝑉𝑘)) = ((𝑉𝑘)(+g𝐺)((𝑌𝑙) (𝑉𝑙))))
7513, 17, 14, 18, 26, 48, 53, 56, 74srgpcomp 20129 . . . . . . . . . . . . 13 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (((𝑌𝑘) (𝑉𝑘))(+g𝐺)((𝑌𝑙) (𝑉𝑙))) = (((𝑌𝑙) (𝑉𝑙))(+g𝐺)((𝑌𝑘) (𝑉𝑘))))
76 oveq12 7350 . . . . . . . . . . . . . 14 ((𝑥 = ((𝑌𝑘) (𝑉𝑘)) ∧ 𝑦 = ((𝑌𝑙) (𝑉𝑙))) → (𝑥(+g𝐺)𝑦) = (((𝑌𝑘) (𝑉𝑘))(+g𝐺)((𝑌𝑙) (𝑉𝑙))))
77 oveq12 7350 . . . . . . . . . . . . . . 15 ((𝑦 = ((𝑌𝑙) (𝑉𝑙)) ∧ 𝑥 = ((𝑌𝑘) (𝑉𝑘))) → (𝑦(+g𝐺)𝑥) = (((𝑌𝑙) (𝑉𝑙))(+g𝐺)((𝑌𝑘) (𝑉𝑘))))
7877ancoms 458 . . . . . . . . . . . . . 14 ((𝑥 = ((𝑌𝑘) (𝑉𝑘)) ∧ 𝑦 = ((𝑌𝑙) (𝑉𝑙))) → (𝑦(+g𝐺)𝑥) = (((𝑌𝑙) (𝑉𝑙))(+g𝐺)((𝑌𝑘) (𝑉𝑘))))
7976, 78eqeq12d 2746 . . . . . . . . . . . . 13 ((𝑥 = ((𝑌𝑘) (𝑉𝑘)) ∧ 𝑦 = ((𝑌𝑙) (𝑉𝑙))) → ((𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (((𝑌𝑘) (𝑉𝑘))(+g𝐺)((𝑌𝑙) (𝑉𝑙))) = (((𝑌𝑙) (𝑉𝑙))(+g𝐺)((𝑌𝑘) (𝑉𝑘)))))
8075, 79syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → ((𝑥 = ((𝑌𝑘) (𝑉𝑘)) ∧ 𝑦 = ((𝑌𝑙) (𝑉𝑙))) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
8180expd 415 . . . . . . . . . . 11 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑦 = ((𝑌𝑙) (𝑉𝑙)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8281rexlimdva 3131 . . . . . . . . . 10 ((𝜑𝑙𝑆) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑦 = ((𝑌𝑙) (𝑉𝑙)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8382com23 86 . . . . . . . . 9 ((𝜑𝑙𝑆) → (𝑦 = ((𝑌𝑙) (𝑉𝑙)) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8483rexlimdva 3131 . . . . . . . 8 (𝜑 → (∃𝑙𝑆 𝑦 = ((𝑌𝑙) (𝑉𝑙)) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8512, 84biimtrid 242 . . . . . . 7 (𝜑 → (∃𝑘𝑆 𝑦 = ((𝑌𝑘) (𝑉𝑘)) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
867, 85sylbid 240 . . . . . 6 (𝜑 → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8786com23 86 . . . . 5 (𝜑 → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
884, 87sylbid 240 . . . 4 (𝜑 → (𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8988imp32 418 . . 3 ((𝜑 ∧ (𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ∧ 𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))))) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
9089ralrimivva 3173 . 2 (𝜑 → ∀𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))∀𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
91 eqid 2730 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
9229adantr 480 . . . . . 6 ((𝜑𝑘𝑆) → 𝐺 ∈ Mnd)
9331sseld 3931 . . . . . . . 8 (𝜑 → (𝑘𝑆𝑘𝐼))
9493imdistani 568 . . . . . . 7 ((𝜑𝑘𝑆) → (𝜑𝑘𝐼))
9594, 54syl 17 . . . . . 6 ((𝜑𝑘𝑆) → (𝑌𝑘) ∈ ℕ0)
9652, 27eleqtrdi 2839 . . . . . 6 ((𝜑𝑘𝑆) → (𝑉𝑘) ∈ (Base‘𝐺))
9791, 18, 92, 95, 96mulgnn0cld 19000 . . . . 5 ((𝜑𝑘𝑆) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝐺))
9897fmpttd 7043 . . . 4 (𝜑 → (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))):𝑆⟶(Base‘𝐺))
9998frnd 6655 . . 3 (𝜑 → ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ (Base‘𝐺))
100 eqid 2730 . . . 4 (+g𝐺) = (+g𝐺)
101 eqid 2730 . . . 4 (Cntz‘𝐺) = (Cntz‘𝐺)
10291, 100, 101sscntz 19231 . . 3 ((ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ (Base‘𝐺) ∧ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ (Base‘𝐺)) → (ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ ∀𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))∀𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
10399, 99, 102syl2anc 584 . 2 (𝜑 → (ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ ∀𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))∀𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
10490, 103mpbird 257 1 (𝜑 → ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wral 3045  wrex 3054  {crab 3393  Vcvv 3434  wss 3900  cmpt 5170  ccnv 5613  ran crn 5615  cima 5617  wf 6473  cfv 6477  (class class class)co 7341  m cmap 8745  Fincfn 8864  cn 12117  0cn0 12373  Basecbs 17112  +gcplusg 17153  .rcmulr 17154  0gc0g 17335  Mndcmnd 18634  .gcmg 18972  Cntzccntz 19220  mulGrpcmgp 20051  1rcur 20092  SRingcsrg 20097  Ringcrg 20144   mVar cmvr 21835   mPoly cmpl 21836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-fzo 13547  df-seq 13901  df-hash 14230  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-hom 17177  df-cco 17178  df-0g 17337  df-gsum 17338  df-prds 17343  df-pws 17345  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-mulg 18973  df-subg 19028  df-ghm 19118  df-cntz 19222  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-srg 20098  df-ring 20146  df-subrng 20454  df-subrg 20478  df-psr 21839  df-mvr 21840  df-mpl 21841
This theorem is referenced by:  mplcoe5  21968
  Copyright terms: Public domain W3C validator