MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe5lem Structured version   Visualization version   GIF version

Theorem mplcoe5lem 21953
Description: Lemma for mplcoe4 21985. (Contributed by AV, 7-Oct-2019.)
Hypotheses
Ref Expression
mplcoe1.p 𝑃 = (𝐼 mPoly 𝑅)
mplcoe1.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplcoe1.z 0 = (0g𝑅)
mplcoe1.o 1 = (1r𝑅)
mplcoe1.i (𝜑𝐼𝑊)
mplcoe2.g 𝐺 = (mulGrp‘𝑃)
mplcoe2.m = (.g𝐺)
mplcoe2.v 𝑉 = (𝐼 mVar 𝑅)
mplcoe5.r (𝜑𝑅 ∈ Ring)
mplcoe5.y (𝜑𝑌𝐷)
mplcoe5.c (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
mplcoe5.s (𝜑𝑆𝐼)
Assertion
Ref Expression
mplcoe5lem (𝜑 → ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Distinct variable groups:   𝑥,𝑘, ,𝑦   1 ,𝑘   𝑥,𝑦, 1   𝑘,𝐺,𝑥   𝑓,𝑘,𝑥,𝑦,𝐼   𝜑,𝑘,𝑥,𝑦   𝑅,𝑓,𝑦   𝐷,𝑘,𝑥,𝑦   𝑃,𝑘,𝑥   𝑘,𝑉,𝑥   0 ,𝑓,𝑘,𝑥,𝑦   𝑓,𝑌,𝑘,𝑥,𝑦   𝑘,𝑊,𝑦   𝑦,𝐺   𝑦,𝑉   𝑦,   𝑆,𝑘,𝑦,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑥,𝑘)   𝑆(𝑓)   1 (𝑓)   (𝑓)   𝐺(𝑓)   𝑉(𝑓)   𝑊(𝑥,𝑓)

Proof of Theorem mplcoe5lem
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 vex 3454 . . . . . 6 𝑥 ∈ V
2 eqid 2730 . . . . . . 7 (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))
32elrnmpt 5925 . . . . . 6 (𝑥 ∈ V → (𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ↔ ∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘))))
41, 3mp1i 13 . . . . 5 (𝜑 → (𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ↔ ∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘))))
5 vex 3454 . . . . . . . 8 𝑦 ∈ V
62elrnmpt 5925 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ↔ ∃𝑘𝑆 𝑦 = ((𝑌𝑘) (𝑉𝑘))))
75, 6mp1i 13 . . . . . . 7 (𝜑 → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ↔ ∃𝑘𝑆 𝑦 = ((𝑌𝑘) (𝑉𝑘))))
8 fveq2 6861 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑌𝑘) = (𝑌𝑙))
9 fveq2 6861 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑉𝑘) = (𝑉𝑙))
108, 9oveq12d 7408 . . . . . . . . . 10 (𝑘 = 𝑙 → ((𝑌𝑘) (𝑉𝑘)) = ((𝑌𝑙) (𝑉𝑙)))
1110eqeq2d 2741 . . . . . . . . 9 (𝑘 = 𝑙 → (𝑦 = ((𝑌𝑘) (𝑉𝑘)) ↔ 𝑦 = ((𝑌𝑙) (𝑉𝑙))))
1211cbvrexvw 3217 . . . . . . . 8 (∃𝑘𝑆 𝑦 = ((𝑌𝑘) (𝑉𝑘)) ↔ ∃𝑙𝑆 𝑦 = ((𝑌𝑙) (𝑉𝑙)))
13 eqid 2730 . . . . . . . . . . . . . 14 (Base‘𝑃) = (Base‘𝑃)
14 mplcoe2.g . . . . . . . . . . . . . . . 16 𝐺 = (mulGrp‘𝑃)
15 eqid 2730 . . . . . . . . . . . . . . . 16 (.r𝑃) = (.r𝑃)
1614, 15mgpplusg 20060 . . . . . . . . . . . . . . 15 (.r𝑃) = (+g𝐺)
1716eqcomi 2739 . . . . . . . . . . . . . 14 (+g𝐺) = (.r𝑃)
18 mplcoe2.m . . . . . . . . . . . . . 14 = (.g𝐺)
19 mplcoe1.p . . . . . . . . . . . . . . . . . 18 𝑃 = (𝐼 mPoly 𝑅)
20 mplcoe1.i . . . . . . . . . . . . . . . . . 18 (𝜑𝐼𝑊)
21 mplcoe5.r . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ∈ Ring)
2219, 20, 21mplringd 21939 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ Ring)
23 ringsrg 20213 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Ring → 𝑃 ∈ SRing)
2422, 23syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ SRing)
2524adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑙𝑆) → 𝑃 ∈ SRing)
2625adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → 𝑃 ∈ SRing)
2714, 13mgpbas 20061 . . . . . . . . . . . . . . . 16 (Base‘𝑃) = (Base‘𝐺)
2814ringmgp 20155 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Ring → 𝐺 ∈ Mnd)
2922, 28syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ∈ Mnd)
3029adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑙𝑆) → 𝐺 ∈ Mnd)
31 mplcoe5.s . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆𝐼)
3231sseld 3948 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑙𝑆𝑙𝐼))
3332imdistani 568 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝑆) → (𝜑𝑙𝐼))
34 mplcoe5.y . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌𝐷)
35 mplcoe1.d . . . . . . . . . . . . . . . . . . . . . 22 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
3635psrbag 21833 . . . . . . . . . . . . . . . . . . . . 21 (𝐼𝑊 → (𝑌𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin)))
3720, 36syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑌𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin)))
3834, 37mpbid 232 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin))
3938simpld 494 . . . . . . . . . . . . . . . . . 18 (𝜑𝑌:𝐼⟶ℕ0)
4039ffvelcdmda 7059 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝐼) → (𝑌𝑙) ∈ ℕ0)
4133, 40syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑙𝑆) → (𝑌𝑙) ∈ ℕ0)
42 mplcoe2.v . . . . . . . . . . . . . . . . 17 𝑉 = (𝐼 mVar 𝑅)
4320adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝑆) → 𝐼𝑊)
4421adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝑆) → 𝑅 ∈ Ring)
4531sselda 3949 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝑆) → 𝑙𝐼)
4619, 42, 13, 43, 44, 45mvrcl 21908 . . . . . . . . . . . . . . . 16 ((𝜑𝑙𝑆) → (𝑉𝑙) ∈ (Base‘𝑃))
4727, 18, 30, 41, 46mulgnn0cld 19034 . . . . . . . . . . . . . . 15 ((𝜑𝑙𝑆) → ((𝑌𝑙) (𝑉𝑙)) ∈ (Base‘𝑃))
4847adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → ((𝑌𝑙) (𝑉𝑙)) ∈ (Base‘𝑃))
4920adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑆) → 𝐼𝑊)
5021adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑆) → 𝑅 ∈ Ring)
5131sselda 3949 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑆) → 𝑘𝐼)
5219, 42, 13, 49, 50, 51mvrcl 21908 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑆) → (𝑉𝑘) ∈ (Base‘𝑃))
5352adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑉𝑘) ∈ (Base‘𝑃))
5439ffvelcdmda 7059 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐼) → (𝑌𝑘) ∈ ℕ0)
5551, 54syldan 591 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑆) → (𝑌𝑘) ∈ ℕ0)
5655adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑌𝑘) ∈ ℕ0)
5746adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑉𝑙) ∈ (Base‘𝑃))
5841adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑌𝑙) ∈ ℕ0)
59 mplcoe5.c . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
60 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑙 → (𝑉𝑥) = (𝑉𝑙))
6160oveq2d 7406 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑙 → ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑦)(+g𝐺)(𝑉𝑙)))
6260oveq1d 7405 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑙 → ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑦)))
6361, 62eqeq12d 2746 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑙 → (((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) ↔ ((𝑉𝑦)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑦))))
64 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑘 → (𝑉𝑦) = (𝑉𝑘))
6564oveq1d 7405 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑘 → ((𝑉𝑦)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑘)(+g𝐺)(𝑉𝑙)))
6664oveq2d 7406 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑘 → ((𝑉𝑙)(+g𝐺)(𝑉𝑦)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘)))
6765, 66eqeq12d 2746 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑘 → (((𝑉𝑦)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑦)) ↔ ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘))))
6863, 67rspc2v 3602 . . . . . . . . . . . . . . . . . . 19 ((𝑙𝐼𝑘𝐼) → (∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘))))
6945, 51anim12dan 619 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑙𝑆𝑘𝑆)) → (𝑙𝐼𝑘𝐼))
7068, 69syl11 33 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) → ((𝜑 ∧ (𝑙𝑆𝑘𝑆)) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘))))
7170expd 415 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) → (𝜑 → ((𝑙𝑆𝑘𝑆) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘)))))
7259, 71mpcom 38 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑙𝑆𝑘𝑆) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘))))
7372impl 455 . . . . . . . . . . . . . . 15 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘)))
7413, 17, 14, 18, 26, 53, 57, 58, 73srgpcomp 20134 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (((𝑌𝑙) (𝑉𝑙))(+g𝐺)(𝑉𝑘)) = ((𝑉𝑘)(+g𝐺)((𝑌𝑙) (𝑉𝑙))))
7513, 17, 14, 18, 26, 48, 53, 56, 74srgpcomp 20134 . . . . . . . . . . . . 13 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (((𝑌𝑘) (𝑉𝑘))(+g𝐺)((𝑌𝑙) (𝑉𝑙))) = (((𝑌𝑙) (𝑉𝑙))(+g𝐺)((𝑌𝑘) (𝑉𝑘))))
76 oveq12 7399 . . . . . . . . . . . . . 14 ((𝑥 = ((𝑌𝑘) (𝑉𝑘)) ∧ 𝑦 = ((𝑌𝑙) (𝑉𝑙))) → (𝑥(+g𝐺)𝑦) = (((𝑌𝑘) (𝑉𝑘))(+g𝐺)((𝑌𝑙) (𝑉𝑙))))
77 oveq12 7399 . . . . . . . . . . . . . . 15 ((𝑦 = ((𝑌𝑙) (𝑉𝑙)) ∧ 𝑥 = ((𝑌𝑘) (𝑉𝑘))) → (𝑦(+g𝐺)𝑥) = (((𝑌𝑙) (𝑉𝑙))(+g𝐺)((𝑌𝑘) (𝑉𝑘))))
7877ancoms 458 . . . . . . . . . . . . . 14 ((𝑥 = ((𝑌𝑘) (𝑉𝑘)) ∧ 𝑦 = ((𝑌𝑙) (𝑉𝑙))) → (𝑦(+g𝐺)𝑥) = (((𝑌𝑙) (𝑉𝑙))(+g𝐺)((𝑌𝑘) (𝑉𝑘))))
7976, 78eqeq12d 2746 . . . . . . . . . . . . 13 ((𝑥 = ((𝑌𝑘) (𝑉𝑘)) ∧ 𝑦 = ((𝑌𝑙) (𝑉𝑙))) → ((𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (((𝑌𝑘) (𝑉𝑘))(+g𝐺)((𝑌𝑙) (𝑉𝑙))) = (((𝑌𝑙) (𝑉𝑙))(+g𝐺)((𝑌𝑘) (𝑉𝑘)))))
8075, 79syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → ((𝑥 = ((𝑌𝑘) (𝑉𝑘)) ∧ 𝑦 = ((𝑌𝑙) (𝑉𝑙))) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
8180expd 415 . . . . . . . . . . 11 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑦 = ((𝑌𝑙) (𝑉𝑙)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8281rexlimdva 3135 . . . . . . . . . 10 ((𝜑𝑙𝑆) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑦 = ((𝑌𝑙) (𝑉𝑙)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8382com23 86 . . . . . . . . 9 ((𝜑𝑙𝑆) → (𝑦 = ((𝑌𝑙) (𝑉𝑙)) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8483rexlimdva 3135 . . . . . . . 8 (𝜑 → (∃𝑙𝑆 𝑦 = ((𝑌𝑙) (𝑉𝑙)) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8512, 84biimtrid 242 . . . . . . 7 (𝜑 → (∃𝑘𝑆 𝑦 = ((𝑌𝑘) (𝑉𝑘)) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
867, 85sylbid 240 . . . . . 6 (𝜑 → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8786com23 86 . . . . 5 (𝜑 → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
884, 87sylbid 240 . . . 4 (𝜑 → (𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8988imp32 418 . . 3 ((𝜑 ∧ (𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ∧ 𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))))) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
9089ralrimivva 3181 . 2 (𝜑 → ∀𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))∀𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
91 eqid 2730 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
9229adantr 480 . . . . . 6 ((𝜑𝑘𝑆) → 𝐺 ∈ Mnd)
9331sseld 3948 . . . . . . . 8 (𝜑 → (𝑘𝑆𝑘𝐼))
9493imdistani 568 . . . . . . 7 ((𝜑𝑘𝑆) → (𝜑𝑘𝐼))
9594, 54syl 17 . . . . . 6 ((𝜑𝑘𝑆) → (𝑌𝑘) ∈ ℕ0)
9652, 27eleqtrdi 2839 . . . . . 6 ((𝜑𝑘𝑆) → (𝑉𝑘) ∈ (Base‘𝐺))
9791, 18, 92, 95, 96mulgnn0cld 19034 . . . . 5 ((𝜑𝑘𝑆) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝐺))
9897fmpttd 7090 . . . 4 (𝜑 → (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))):𝑆⟶(Base‘𝐺))
9998frnd 6699 . . 3 (𝜑 → ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ (Base‘𝐺))
100 eqid 2730 . . . 4 (+g𝐺) = (+g𝐺)
101 eqid 2730 . . . 4 (Cntz‘𝐺) = (Cntz‘𝐺)
10291, 100, 101sscntz 19265 . . 3 ((ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ (Base‘𝐺) ∧ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ (Base‘𝐺)) → (ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ ∀𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))∀𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
10399, 99, 102syl2anc 584 . 2 (𝜑 → (ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ ∀𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))∀𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
10490, 103mpbird 257 1 (𝜑 → ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  wss 3917  cmpt 5191  ccnv 5640  ran crn 5642  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  Fincfn 8921  cn 12193  0cn0 12449  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  0gc0g 17409  Mndcmnd 18668  .gcmg 19006  Cntzccntz 19254  mulGrpcmgp 20056  1rcur 20097  SRingcsrg 20102  Ringcrg 20149   mVar cmvr 21821   mPoly cmpl 21822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-subrng 20462  df-subrg 20486  df-psr 21825  df-mvr 21826  df-mpl 21827
This theorem is referenced by:  mplcoe5  21954
  Copyright terms: Public domain W3C validator