MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe5lem Structured version   Visualization version   GIF version

Theorem mplcoe5lem 21964
Description: Lemma for mplcoe4 22002. (Contributed by AV, 7-Oct-2019.)
Hypotheses
Ref Expression
mplcoe1.p 𝑃 = (𝐼 mPoly 𝑅)
mplcoe1.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplcoe1.z 0 = (0g𝑅)
mplcoe1.o 1 = (1r𝑅)
mplcoe1.i (𝜑𝐼𝑊)
mplcoe2.g 𝐺 = (mulGrp‘𝑃)
mplcoe2.m = (.g𝐺)
mplcoe2.v 𝑉 = (𝐼 mVar 𝑅)
mplcoe5.r (𝜑𝑅 ∈ Ring)
mplcoe5.y (𝜑𝑌𝐷)
mplcoe5.c (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
mplcoe5.s (𝜑𝑆𝐼)
Assertion
Ref Expression
mplcoe5lem (𝜑 → ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Distinct variable groups:   𝑥,𝑘, ,𝑦   1 ,𝑘   𝑥,𝑦, 1   𝑘,𝐺,𝑥   𝑓,𝑘,𝑥,𝑦,𝐼   𝜑,𝑘,𝑥,𝑦   𝑅,𝑓,𝑦   𝐷,𝑘,𝑥,𝑦   𝑃,𝑘,𝑥   𝑘,𝑉,𝑥   0 ,𝑓,𝑘,𝑥,𝑦   𝑓,𝑌,𝑘,𝑥,𝑦   𝑘,𝑊,𝑦   𝑦,𝐺   𝑦,𝑉   𝑦,   𝑆,𝑘,𝑦,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑥,𝑘)   𝑆(𝑓)   1 (𝑓)   (𝑓)   𝐺(𝑓)   𝑉(𝑓)   𝑊(𝑥,𝑓)

Proof of Theorem mplcoe5lem
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 vex 3473 . . . . . 6 𝑥 ∈ V
2 eqid 2727 . . . . . . 7 (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))
32elrnmpt 5952 . . . . . 6 (𝑥 ∈ V → (𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ↔ ∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘))))
41, 3mp1i 13 . . . . 5 (𝜑 → (𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ↔ ∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘))))
5 vex 3473 . . . . . . . 8 𝑦 ∈ V
62elrnmpt 5952 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ↔ ∃𝑘𝑆 𝑦 = ((𝑌𝑘) (𝑉𝑘))))
75, 6mp1i 13 . . . . . . 7 (𝜑 → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ↔ ∃𝑘𝑆 𝑦 = ((𝑌𝑘) (𝑉𝑘))))
8 fveq2 6891 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑌𝑘) = (𝑌𝑙))
9 fveq2 6891 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑉𝑘) = (𝑉𝑙))
108, 9oveq12d 7432 . . . . . . . . . 10 (𝑘 = 𝑙 → ((𝑌𝑘) (𝑉𝑘)) = ((𝑌𝑙) (𝑉𝑙)))
1110eqeq2d 2738 . . . . . . . . 9 (𝑘 = 𝑙 → (𝑦 = ((𝑌𝑘) (𝑉𝑘)) ↔ 𝑦 = ((𝑌𝑙) (𝑉𝑙))))
1211cbvrexvw 3230 . . . . . . . 8 (∃𝑘𝑆 𝑦 = ((𝑌𝑘) (𝑉𝑘)) ↔ ∃𝑙𝑆 𝑦 = ((𝑌𝑙) (𝑉𝑙)))
13 eqid 2727 . . . . . . . . . . . . . 14 (Base‘𝑃) = (Base‘𝑃)
14 mplcoe2.g . . . . . . . . . . . . . . . 16 𝐺 = (mulGrp‘𝑃)
15 eqid 2727 . . . . . . . . . . . . . . . 16 (.r𝑃) = (.r𝑃)
1614, 15mgpplusg 20069 . . . . . . . . . . . . . . 15 (.r𝑃) = (+g𝐺)
1716eqcomi 2736 . . . . . . . . . . . . . 14 (+g𝐺) = (.r𝑃)
18 mplcoe2.m . . . . . . . . . . . . . 14 = (.g𝐺)
19 mplcoe1.i . . . . . . . . . . . . . . . . . 18 (𝜑𝐼𝑊)
20 mplcoe5.r . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ∈ Ring)
21 mplcoe1.p . . . . . . . . . . . . . . . . . . 19 𝑃 = (𝐼 mPoly 𝑅)
2221mplring 21948 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑊𝑅 ∈ Ring) → 𝑃 ∈ Ring)
2319, 20, 22syl2anc 583 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ Ring)
24 ringsrg 20222 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Ring → 𝑃 ∈ SRing)
2523, 24syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ SRing)
2625adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑙𝑆) → 𝑃 ∈ SRing)
2726adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → 𝑃 ∈ SRing)
2814, 13mgpbas 20071 . . . . . . . . . . . . . . . 16 (Base‘𝑃) = (Base‘𝐺)
2914ringmgp 20170 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Ring → 𝐺 ∈ Mnd)
3023, 29syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ∈ Mnd)
3130adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑙𝑆) → 𝐺 ∈ Mnd)
32 mplcoe5.s . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆𝐼)
3332sseld 3977 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑙𝑆𝑙𝐼))
3433imdistani 568 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝑆) → (𝜑𝑙𝐼))
35 mplcoe5.y . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌𝐷)
36 mplcoe1.d . . . . . . . . . . . . . . . . . . . . . 22 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
3736psrbag 21837 . . . . . . . . . . . . . . . . . . . . 21 (𝐼𝑊 → (𝑌𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin)))
3819, 37syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑌𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin)))
3935, 38mpbid 231 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin))
4039simpld 494 . . . . . . . . . . . . . . . . . 18 (𝜑𝑌:𝐼⟶ℕ0)
4140ffvelcdmda 7088 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝐼) → (𝑌𝑙) ∈ ℕ0)
4234, 41syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑙𝑆) → (𝑌𝑙) ∈ ℕ0)
43 mplcoe2.v . . . . . . . . . . . . . . . . 17 𝑉 = (𝐼 mVar 𝑅)
4419adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝑆) → 𝐼𝑊)
4520adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝑆) → 𝑅 ∈ Ring)
4632sselda 3978 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝑆) → 𝑙𝐼)
4721, 43, 13, 44, 45, 46mvrcl 21921 . . . . . . . . . . . . . . . 16 ((𝜑𝑙𝑆) → (𝑉𝑙) ∈ (Base‘𝑃))
4828, 18, 31, 42, 47mulgnn0cld 19041 . . . . . . . . . . . . . . 15 ((𝜑𝑙𝑆) → ((𝑌𝑙) (𝑉𝑙)) ∈ (Base‘𝑃))
4948adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → ((𝑌𝑙) (𝑉𝑙)) ∈ (Base‘𝑃))
5019adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑆) → 𝐼𝑊)
5120adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑆) → 𝑅 ∈ Ring)
5232sselda 3978 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑆) → 𝑘𝐼)
5321, 43, 13, 50, 51, 52mvrcl 21921 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑆) → (𝑉𝑘) ∈ (Base‘𝑃))
5453adantlr 714 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑉𝑘) ∈ (Base‘𝑃))
5540ffvelcdmda 7088 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐼) → (𝑌𝑘) ∈ ℕ0)
5652, 55syldan 590 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑆) → (𝑌𝑘) ∈ ℕ0)
5756adantlr 714 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑌𝑘) ∈ ℕ0)
5847adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑉𝑙) ∈ (Base‘𝑃))
5942adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑌𝑙) ∈ ℕ0)
60 mplcoe5.c . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
61 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑙 → (𝑉𝑥) = (𝑉𝑙))
6261oveq2d 7430 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑙 → ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑦)(+g𝐺)(𝑉𝑙)))
6361oveq1d 7429 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑙 → ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑦)))
6462, 63eqeq12d 2743 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑙 → (((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) ↔ ((𝑉𝑦)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑦))))
65 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑘 → (𝑉𝑦) = (𝑉𝑘))
6665oveq1d 7429 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑘 → ((𝑉𝑦)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑘)(+g𝐺)(𝑉𝑙)))
6765oveq2d 7430 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑘 → ((𝑉𝑙)(+g𝐺)(𝑉𝑦)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘)))
6866, 67eqeq12d 2743 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑘 → (((𝑉𝑦)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑦)) ↔ ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘))))
6964, 68rspc2v 3618 . . . . . . . . . . . . . . . . . . 19 ((𝑙𝐼𝑘𝐼) → (∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘))))
7046, 52anim12dan 618 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑙𝑆𝑘𝑆)) → (𝑙𝐼𝑘𝐼))
7169, 70syl11 33 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) → ((𝜑 ∧ (𝑙𝑆𝑘𝑆)) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘))))
7271expd 415 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) → (𝜑 → ((𝑙𝑆𝑘𝑆) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘)))))
7360, 72mpcom 38 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑙𝑆𝑘𝑆) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘))))
7473impl 455 . . . . . . . . . . . . . . 15 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘)))
7513, 17, 14, 18, 27, 54, 58, 59, 74srgpcomp 20149 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (((𝑌𝑙) (𝑉𝑙))(+g𝐺)(𝑉𝑘)) = ((𝑉𝑘)(+g𝐺)((𝑌𝑙) (𝑉𝑙))))
7613, 17, 14, 18, 27, 49, 54, 57, 75srgpcomp 20149 . . . . . . . . . . . . 13 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (((𝑌𝑘) (𝑉𝑘))(+g𝐺)((𝑌𝑙) (𝑉𝑙))) = (((𝑌𝑙) (𝑉𝑙))(+g𝐺)((𝑌𝑘) (𝑉𝑘))))
77 oveq12 7423 . . . . . . . . . . . . . 14 ((𝑥 = ((𝑌𝑘) (𝑉𝑘)) ∧ 𝑦 = ((𝑌𝑙) (𝑉𝑙))) → (𝑥(+g𝐺)𝑦) = (((𝑌𝑘) (𝑉𝑘))(+g𝐺)((𝑌𝑙) (𝑉𝑙))))
78 oveq12 7423 . . . . . . . . . . . . . . 15 ((𝑦 = ((𝑌𝑙) (𝑉𝑙)) ∧ 𝑥 = ((𝑌𝑘) (𝑉𝑘))) → (𝑦(+g𝐺)𝑥) = (((𝑌𝑙) (𝑉𝑙))(+g𝐺)((𝑌𝑘) (𝑉𝑘))))
7978ancoms 458 . . . . . . . . . . . . . 14 ((𝑥 = ((𝑌𝑘) (𝑉𝑘)) ∧ 𝑦 = ((𝑌𝑙) (𝑉𝑙))) → (𝑦(+g𝐺)𝑥) = (((𝑌𝑙) (𝑉𝑙))(+g𝐺)((𝑌𝑘) (𝑉𝑘))))
8077, 79eqeq12d 2743 . . . . . . . . . . . . 13 ((𝑥 = ((𝑌𝑘) (𝑉𝑘)) ∧ 𝑦 = ((𝑌𝑙) (𝑉𝑙))) → ((𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (((𝑌𝑘) (𝑉𝑘))(+g𝐺)((𝑌𝑙) (𝑉𝑙))) = (((𝑌𝑙) (𝑉𝑙))(+g𝐺)((𝑌𝑘) (𝑉𝑘)))))
8176, 80syl5ibrcom 246 . . . . . . . . . . . 12 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → ((𝑥 = ((𝑌𝑘) (𝑉𝑘)) ∧ 𝑦 = ((𝑌𝑙) (𝑉𝑙))) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
8281expd 415 . . . . . . . . . . 11 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑦 = ((𝑌𝑙) (𝑉𝑙)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8382rexlimdva 3150 . . . . . . . . . 10 ((𝜑𝑙𝑆) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑦 = ((𝑌𝑙) (𝑉𝑙)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8483com23 86 . . . . . . . . 9 ((𝜑𝑙𝑆) → (𝑦 = ((𝑌𝑙) (𝑉𝑙)) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8584rexlimdva 3150 . . . . . . . 8 (𝜑 → (∃𝑙𝑆 𝑦 = ((𝑌𝑙) (𝑉𝑙)) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8612, 85biimtrid 241 . . . . . . 7 (𝜑 → (∃𝑘𝑆 𝑦 = ((𝑌𝑘) (𝑉𝑘)) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
877, 86sylbid 239 . . . . . 6 (𝜑 → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8887com23 86 . . . . 5 (𝜑 → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
894, 88sylbid 239 . . . 4 (𝜑 → (𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
9089imp32 418 . . 3 ((𝜑 ∧ (𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ∧ 𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))))) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
9190ralrimivva 3195 . 2 (𝜑 → ∀𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))∀𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
92 eqid 2727 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
9330adantr 480 . . . . . 6 ((𝜑𝑘𝑆) → 𝐺 ∈ Mnd)
9432sseld 3977 . . . . . . . 8 (𝜑 → (𝑘𝑆𝑘𝐼))
9594imdistani 568 . . . . . . 7 ((𝜑𝑘𝑆) → (𝜑𝑘𝐼))
9695, 55syl 17 . . . . . 6 ((𝜑𝑘𝑆) → (𝑌𝑘) ∈ ℕ0)
9753, 28eleqtrdi 2838 . . . . . 6 ((𝜑𝑘𝑆) → (𝑉𝑘) ∈ (Base‘𝐺))
9892, 18, 93, 96, 97mulgnn0cld 19041 . . . . 5 ((𝜑𝑘𝑆) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝐺))
9998fmpttd 7119 . . . 4 (𝜑 → (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))):𝑆⟶(Base‘𝐺))
10099frnd 6724 . . 3 (𝜑 → ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ (Base‘𝐺))
101 eqid 2727 . . . 4 (+g𝐺) = (+g𝐺)
102 eqid 2727 . . . 4 (Cntz‘𝐺) = (Cntz‘𝐺)
10392, 101, 102sscntz 19268 . . 3 ((ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ (Base‘𝐺) ∧ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ (Base‘𝐺)) → (ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ ∀𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))∀𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
104100, 100, 103syl2anc 583 . 2 (𝜑 → (ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ ∀𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))∀𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
10591, 104mpbird 257 1 (𝜑 → ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3056  wrex 3065  {crab 3427  Vcvv 3469  wss 3944  cmpt 5225  ccnv 5671  ran crn 5673  cima 5675  wf 6538  cfv 6542  (class class class)co 7414  m cmap 8836  Fincfn 8955  cn 12234  0cn0 12494  Basecbs 17171  +gcplusg 17224  .rcmulr 17225  0gc0g 17412  Mndcmnd 18685  .gcmg 19014  Cntzccntz 19257  mulGrpcmgp 20065  1rcur 20112  SRingcsrg 20117  Ringcrg 20164   mVar cmvr 21825   mPoly cmpl 21826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-pm 8839  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-sup 9457  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-fzo 13652  df-seq 13991  df-hash 14314  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-hom 17248  df-cco 17249  df-0g 17414  df-gsum 17415  df-prds 17420  df-pws 17422  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-mhm 18731  df-submnd 18732  df-grp 18884  df-minusg 18885  df-mulg 19015  df-subg 19069  df-ghm 19159  df-cntz 19259  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-srg 20118  df-ring 20166  df-subrng 20472  df-subrg 20497  df-psr 21829  df-mvr 21830  df-mpl 21831
This theorem is referenced by:  mplcoe5  21965
  Copyright terms: Public domain W3C validator