MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspgval Structured version   Visualization version   GIF version

Theorem sspgval 30665
Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspg.y 𝑌 = (BaseSet‘𝑊)
sspg.g 𝐺 = ( +𝑣𝑈)
sspg.f 𝐹 = ( +𝑣𝑊)
sspg.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspgval (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵))

Proof of Theorem sspgval
StepHypRef Expression
1 sspg.y . . . 4 𝑌 = (BaseSet‘𝑊)
2 sspg.g . . . 4 𝐺 = ( +𝑣𝑈)
3 sspg.f . . . 4 𝐹 = ( +𝑣𝑊)
4 sspg.h . . . 4 𝐻 = (SubSp‘𝑈)
51, 2, 3, 4sspg 30664 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌)))
65oveqd 7407 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐴𝐹𝐵) = (𝐴(𝐺 ↾ (𝑌 × 𝑌))𝐵))
7 ovres 7558 . 2 ((𝐴𝑌𝐵𝑌) → (𝐴(𝐺 ↾ (𝑌 × 𝑌))𝐵) = (𝐴𝐺𝐵))
86, 7sylan9eq 2785 1 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   × cxp 5639  cres 5643  cfv 6514  (class class class)co 7390  NrmCVeccnv 30520   +𝑣 cpv 30521  BaseSetcba 30522  SubSpcss 30657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-1st 7971  df-2nd 7972  df-grpo 30429  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-nmcv 30536  df-ssp 30658
This theorem is referenced by:  sspmval  30669  minvecolem2  30811  hhshsslem2  31204
  Copyright terms: Public domain W3C validator