MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspgval Structured version   Visualization version   GIF version

Theorem sspgval 29136
Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspg.y 𝑌 = (BaseSet‘𝑊)
sspg.g 𝐺 = ( +𝑣𝑈)
sspg.f 𝐹 = ( +𝑣𝑊)
sspg.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspgval (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵))

Proof of Theorem sspgval
StepHypRef Expression
1 sspg.y . . . 4 𝑌 = (BaseSet‘𝑊)
2 sspg.g . . . 4 𝐺 = ( +𝑣𝑈)
3 sspg.f . . . 4 𝐹 = ( +𝑣𝑊)
4 sspg.h . . . 4 𝐻 = (SubSp‘𝑈)
51, 2, 3, 4sspg 29135 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌)))
65oveqd 7324 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐴𝐹𝐵) = (𝐴(𝐺 ↾ (𝑌 × 𝑌))𝐵))
7 ovres 7470 . 2 ((𝐴𝑌𝐵𝑌) → (𝐴(𝐺 ↾ (𝑌 × 𝑌))𝐵) = (𝐴𝐺𝐵))
86, 7sylan9eq 2796 1 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104   × cxp 5598  cres 5602  cfv 6458  (class class class)co 7307  NrmCVeccnv 28991   +𝑣 cpv 28992  BaseSetcba 28993  SubSpcss 29128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-1st 7863  df-2nd 7864  df-grpo 28900  df-ablo 28952  df-vc 28966  df-nv 28999  df-va 29002  df-ba 29003  df-sm 29004  df-0v 29005  df-nmcv 29007  df-ssp 29129
This theorem is referenced by:  sspmval  29140  minvecolem2  29282  hhshsslem2  29675
  Copyright terms: Public domain W3C validator