| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspgval | Structured version Visualization version GIF version | ||
| Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspg.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| sspg.g | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| sspg.f | ⊢ 𝐹 = ( +𝑣 ‘𝑊) |
| sspg.h | ⊢ 𝐻 = (SubSp‘𝑈) |
| Ref | Expression |
|---|---|
| sspgval | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspg.y | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 2 | sspg.g | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 3 | sspg.f | . . . 4 ⊢ 𝐹 = ( +𝑣 ‘𝑊) | |
| 4 | sspg.h | . . . 4 ⊢ 𝐻 = (SubSp‘𝑈) | |
| 5 | 1, 2, 3, 4 | sspg 30710 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) |
| 6 | 5 | oveqd 7369 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝐴𝐹𝐵) = (𝐴(𝐺 ↾ (𝑌 × 𝑌))𝐵)) |
| 7 | ovres 7518 | . 2 ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) → (𝐴(𝐺 ↾ (𝑌 × 𝑌))𝐵) = (𝐴𝐺𝐵)) | |
| 8 | 6, 7 | sylan9eq 2788 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 × cxp 5617 ↾ cres 5621 ‘cfv 6486 (class class class)co 7352 NrmCVeccnv 30566 +𝑣 cpv 30567 BaseSetcba 30568 SubSpcss 30703 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-1st 7927 df-2nd 7928 df-grpo 30475 df-ablo 30527 df-vc 30541 df-nv 30574 df-va 30577 df-ba 30578 df-sm 30579 df-0v 30580 df-nmcv 30582 df-ssp 30704 |
| This theorem is referenced by: sspmval 30715 minvecolem2 30857 hhshsslem2 31250 |
| Copyright terms: Public domain | W3C validator |