Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspgval Structured version   Visualization version   GIF version

Theorem sspgval 28625
 Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspg.y 𝑌 = (BaseSet‘𝑊)
sspg.g 𝐺 = ( +𝑣𝑈)
sspg.f 𝐹 = ( +𝑣𝑊)
sspg.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspgval (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵))

Proof of Theorem sspgval
StepHypRef Expression
1 sspg.y . . . 4 𝑌 = (BaseSet‘𝑊)
2 sspg.g . . . 4 𝐺 = ( +𝑣𝑈)
3 sspg.f . . . 4 𝐹 = ( +𝑣𝑊)
4 sspg.h . . . 4 𝐻 = (SubSp‘𝑈)
51, 2, 3, 4sspg 28624 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌)))
65oveqd 7173 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (𝐴𝐹𝐵) = (𝐴(𝐺 ↾ (𝑌 × 𝑌))𝐵))
7 ovres 7316 . 2 ((𝐴𝑌𝐵𝑌) → (𝐴(𝐺 ↾ (𝑌 × 𝑌))𝐵) = (𝐴𝐺𝐵))
86, 7sylan9eq 2813 1 (((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) ∧ (𝐴𝑌𝐵𝑌)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   × cxp 5526   ↾ cres 5530  ‘cfv 6340  (class class class)co 7156  NrmCVeccnv 28480   +𝑣 cpv 28481  BaseSetcba 28482  SubSpcss 28617 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-oprab 7160  df-1st 7699  df-2nd 7700  df-grpo 28389  df-ablo 28441  df-vc 28455  df-nv 28488  df-va 28491  df-ba 28492  df-sm 28493  df-0v 28494  df-nmcv 28496  df-ssp 28618 This theorem is referenced by:  sspmval  28629  minvecolem2  28771  hhshsslem2  29164
 Copyright terms: Public domain W3C validator