| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspgval | Structured version Visualization version GIF version | ||
| Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspg.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| sspg.g | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| sspg.f | ⊢ 𝐹 = ( +𝑣 ‘𝑊) |
| sspg.h | ⊢ 𝐻 = (SubSp‘𝑈) |
| Ref | Expression |
|---|---|
| sspgval | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspg.y | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 2 | sspg.g | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 3 | sspg.f | . . . 4 ⊢ 𝐹 = ( +𝑣 ‘𝑊) | |
| 4 | sspg.h | . . . 4 ⊢ 𝐻 = (SubSp‘𝑈) | |
| 5 | 1, 2, 3, 4 | sspg 30690 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) |
| 6 | 5 | oveqd 7370 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝐴𝐹𝐵) = (𝐴(𝐺 ↾ (𝑌 × 𝑌))𝐵)) |
| 7 | ovres 7519 | . 2 ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) → (𝐴(𝐺 ↾ (𝑌 × 𝑌))𝐵) = (𝐴𝐺𝐵)) | |
| 8 | 6, 7 | sylan9eq 2784 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 × cxp 5621 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 NrmCVeccnv 30546 +𝑣 cpv 30547 BaseSetcba 30548 SubSpcss 30683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-1st 7931 df-2nd 7932 df-grpo 30455 df-ablo 30507 df-vc 30521 df-nv 30554 df-va 30557 df-ba 30558 df-sm 30559 df-0v 30560 df-nmcv 30562 df-ssp 30684 |
| This theorem is referenced by: sspmval 30695 minvecolem2 30837 hhshsslem2 31230 |
| Copyright terms: Public domain | W3C validator |