| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspgval | Structured version Visualization version GIF version | ||
| Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspg.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| sspg.g | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| sspg.f | ⊢ 𝐹 = ( +𝑣 ‘𝑊) |
| sspg.h | ⊢ 𝐻 = (SubSp‘𝑈) |
| Ref | Expression |
|---|---|
| sspgval | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspg.y | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 2 | sspg.g | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 3 | sspg.f | . . . 4 ⊢ 𝐹 = ( +𝑣 ‘𝑊) | |
| 4 | sspg.h | . . . 4 ⊢ 𝐻 = (SubSp‘𝑈) | |
| 5 | 1, 2, 3, 4 | sspg 30709 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) |
| 6 | 5 | oveqd 7422 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → (𝐴𝐹𝐵) = (𝐴(𝐺 ↾ (𝑌 × 𝑌))𝐵)) |
| 7 | ovres 7573 | . 2 ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) → (𝐴(𝐺 ↾ (𝑌 × 𝑌))𝐵) = (𝐴𝐺𝐵)) | |
| 8 | 6, 7 | sylan9eq 2790 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) ∧ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 × cxp 5652 ↾ cres 5656 ‘cfv 6531 (class class class)co 7405 NrmCVeccnv 30565 +𝑣 cpv 30566 BaseSetcba 30567 SubSpcss 30702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-1st 7988 df-2nd 7989 df-grpo 30474 df-ablo 30526 df-vc 30540 df-nv 30573 df-va 30576 df-ba 30577 df-sm 30578 df-0v 30579 df-nmcv 30581 df-ssp 30703 |
| This theorem is referenced by: sspmval 30714 minvecolem2 30856 hhshsslem2 31249 |
| Copyright terms: Public domain | W3C validator |