| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cantnflt2 | Structured version Visualization version GIF version | ||
| Description: An upper bound on the CNF function. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 29-Jun-2019.) |
| Ref | Expression |
|---|---|
| cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
| cantnflt2.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| cantnflt2.a | ⊢ (𝜑 → ∅ ∈ 𝐴) |
| cantnflt2.c | ⊢ (𝜑 → 𝐶 ∈ On) |
| cantnflt2.s | ⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| cantnflt2 | ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴 ↑o 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | . . 3 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
| 2 | cantnfs.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 3 | cantnfs.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 4 | eqid 2729 | . . 3 ⊢ OrdIso( E , (𝐹 supp ∅)) = OrdIso( E , (𝐹 supp ∅)) | |
| 5 | cantnflt2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
| 6 | eqid 2729 | . . 3 ⊢ seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅) | |
| 7 | 1, 2, 3, 4, 5, 6 | cantnfval 9621 | . 2 ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝐹 supp ∅)))) |
| 8 | cantnflt2.a | . . 3 ⊢ (𝜑 → ∅ ∈ 𝐴) | |
| 9 | ovexd 7422 | . . . 4 ⊢ (𝜑 → (𝐹 supp ∅) ∈ V) | |
| 10 | 4 | oion 9489 | . . . 4 ⊢ ((𝐹 supp ∅) ∈ V → dom OrdIso( E , (𝐹 supp ∅)) ∈ On) |
| 11 | sucidg 6415 | . . . 4 ⊢ (dom OrdIso( E , (𝐹 supp ∅)) ∈ On → dom OrdIso( E , (𝐹 supp ∅)) ∈ suc dom OrdIso( E , (𝐹 supp ∅))) | |
| 12 | 9, 10, 11 | 3syl 18 | . . 3 ⊢ (𝜑 → dom OrdIso( E , (𝐹 supp ∅)) ∈ suc dom OrdIso( E , (𝐹 supp ∅))) |
| 13 | cantnflt2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ On) | |
| 14 | 1, 2, 3, 4, 5 | cantnfcl 9620 | . . . . . . 7 ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom OrdIso( E , (𝐹 supp ∅)) ∈ ω)) |
| 15 | 14 | simpld 494 | . . . . . 6 ⊢ (𝜑 → E We (𝐹 supp ∅)) |
| 16 | 4 | oiiso 9490 | . . . . . 6 ⊢ (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅))) |
| 17 | 9, 15, 16 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅))) |
| 18 | isof1o 7298 | . . . . 5 ⊢ (OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅)) → OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–1-1-onto→(𝐹 supp ∅)) | |
| 19 | f1ofo 6807 | . . . . 5 ⊢ (OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–1-1-onto→(𝐹 supp ∅) → OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–onto→(𝐹 supp ∅)) | |
| 20 | foima 6777 | . . . . 5 ⊢ (OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–onto→(𝐹 supp ∅) → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) = (𝐹 supp ∅)) | |
| 21 | 17, 18, 19, 20 | 4syl 19 | . . . 4 ⊢ (𝜑 → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) = (𝐹 supp ∅)) |
| 22 | cantnflt2.s | . . . 4 ⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐶) | |
| 23 | 21, 22 | eqsstrd 3981 | . . 3 ⊢ (𝜑 → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) ⊆ 𝐶) |
| 24 | 1, 2, 3, 4, 5, 6, 8, 12, 13, 23 | cantnflt 9625 | . 2 ⊢ (𝜑 → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝐹 supp ∅))) ∈ (𝐴 ↑o 𝐶)) |
| 25 | 7, 24 | eqeltrd 2828 | 1 ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴 ↑o 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 E cep 5537 We wwe 5590 dom cdm 5638 “ cima 5641 Oncon0 6332 suc csuc 6334 –onto→wfo 6509 –1-1-onto→wf1o 6510 ‘cfv 6511 Isom wiso 6512 (class class class)co 7387 ∈ cmpo 7389 ωcom 7842 supp csupp 8139 seqωcseqom 8415 +o coa 8431 ·o comu 8432 ↑o coe 8433 OrdIsocoi 9462 CNF ccnf 9614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-seqom 8416 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-oexp 8440 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-oi 9463 df-cnf 9615 |
| This theorem is referenced by: cantnff 9627 cantnflem1d 9641 cnfcom3lem 9656 cantnfresb 43313 |
| Copyright terms: Public domain | W3C validator |