MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflt2 Structured version   Visualization version   GIF version

Theorem cantnflt2 8854
Description: An upper bound on the CNF function. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 29-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnflt2.f (𝜑𝐹𝑆)
cantnflt2.a (𝜑 → ∅ ∈ 𝐴)
cantnflt2.c (𝜑𝐶 ∈ On)
cantnflt2.s (𝜑 → (𝐹 supp ∅) ⊆ 𝐶)
Assertion
Ref Expression
cantnflt2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶))

Proof of Theorem cantnflt2
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 eqid 2825 . . 3 OrdIso( E , (𝐹 supp ∅)) = OrdIso( E , (𝐹 supp ∅))
5 cantnflt2.f . . 3 (𝜑𝐹𝑆)
6 eqid 2825 . . 3 seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅)
71, 2, 3, 4, 5, 6cantnfval 8849 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝐹 supp ∅))))
8 cantnflt2.a . . 3 (𝜑 → ∅ ∈ 𝐴)
9 cantnflt2.c . . . . 5 (𝜑𝐶 ∈ On)
10 cantnflt2.s . . . . 5 (𝜑 → (𝐹 supp ∅) ⊆ 𝐶)
119, 10ssexd 5032 . . . 4 (𝜑 → (𝐹 supp ∅) ∈ V)
124oion 8717 . . . 4 ((𝐹 supp ∅) ∈ V → dom OrdIso( E , (𝐹 supp ∅)) ∈ On)
13 sucidg 6045 . . . 4 (dom OrdIso( E , (𝐹 supp ∅)) ∈ On → dom OrdIso( E , (𝐹 supp ∅)) ∈ suc dom OrdIso( E , (𝐹 supp ∅)))
1411, 12, 133syl 18 . . 3 (𝜑 → dom OrdIso( E , (𝐹 supp ∅)) ∈ suc dom OrdIso( E , (𝐹 supp ∅)))
151, 2, 3, 4, 5cantnfcl 8848 . . . . . . 7 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom OrdIso( E , (𝐹 supp ∅)) ∈ ω))
1615simpld 490 . . . . . 6 (𝜑 → E We (𝐹 supp ∅))
174oiiso 8718 . . . . . 6 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅)))
1811, 16, 17syl2anc 579 . . . . 5 (𝜑 → OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅)))
19 isof1o 6833 . . . . 5 (OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅)) → OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–1-1-onto→(𝐹 supp ∅))
20 f1ofo 6389 . . . . 5 (OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–1-1-onto→(𝐹 supp ∅) → OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–onto→(𝐹 supp ∅))
21 foima 6362 . . . . 5 (OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–onto→(𝐹 supp ∅) → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) = (𝐹 supp ∅))
2218, 19, 20, 214syl 19 . . . 4 (𝜑 → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) = (𝐹 supp ∅))
2322, 10eqsstrd 3864 . . 3 (𝜑 → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) ⊆ 𝐶)
241, 2, 3, 4, 5, 6, 8, 14, 9, 23cantnflt 8853 . 2 (𝜑 → (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝐹 supp ∅))) ∈ (𝐴o 𝐶))
257, 24eqeltrd 2906 1 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1656  wcel 2164  Vcvv 3414  wss 3798  c0 4146   E cep 5256   We wwe 5304  dom cdm 5346  cima 5349  Oncon0 5967  suc csuc 5969  ontowfo 6125  1-1-ontowf1o 6126  cfv 6127   Isom wiso 6128  (class class class)co 6910  cmpt2 6912  ωcom 7331   supp csupp 7564  seq𝜔cseqom 7813   +o coa 7828   ·o comu 7829  o coe 7830  OrdIsocoi 8690   CNF ccnf 8842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-seqom 7814  df-1o 7831  df-2o 7832  df-oadd 7835  df-omul 7836  df-oexp 7837  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-oi 8691  df-cnf 8843
This theorem is referenced by:  cantnff  8855  cantnflem1d  8869  cnfcom3lem  8884
  Copyright terms: Public domain W3C validator