| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cantnflt2 | Structured version Visualization version GIF version | ||
| Description: An upper bound on the CNF function. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 29-Jun-2019.) |
| Ref | Expression |
|---|---|
| cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
| cantnflt2.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| cantnflt2.a | ⊢ (𝜑 → ∅ ∈ 𝐴) |
| cantnflt2.c | ⊢ (𝜑 → 𝐶 ∈ On) |
| cantnflt2.s | ⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| cantnflt2 | ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴 ↑o 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | . . 3 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
| 2 | cantnfs.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 3 | cantnfs.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 4 | eqid 2735 | . . 3 ⊢ OrdIso( E , (𝐹 supp ∅)) = OrdIso( E , (𝐹 supp ∅)) | |
| 5 | cantnflt2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
| 6 | eqid 2735 | . . 3 ⊢ seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅) | |
| 7 | 1, 2, 3, 4, 5, 6 | cantnfval 9682 | . 2 ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝐹 supp ∅)))) |
| 8 | cantnflt2.a | . . 3 ⊢ (𝜑 → ∅ ∈ 𝐴) | |
| 9 | ovexd 7440 | . . . 4 ⊢ (𝜑 → (𝐹 supp ∅) ∈ V) | |
| 10 | 4 | oion 9550 | . . . 4 ⊢ ((𝐹 supp ∅) ∈ V → dom OrdIso( E , (𝐹 supp ∅)) ∈ On) |
| 11 | sucidg 6435 | . . . 4 ⊢ (dom OrdIso( E , (𝐹 supp ∅)) ∈ On → dom OrdIso( E , (𝐹 supp ∅)) ∈ suc dom OrdIso( E , (𝐹 supp ∅))) | |
| 12 | 9, 10, 11 | 3syl 18 | . . 3 ⊢ (𝜑 → dom OrdIso( E , (𝐹 supp ∅)) ∈ suc dom OrdIso( E , (𝐹 supp ∅))) |
| 13 | cantnflt2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ On) | |
| 14 | 1, 2, 3, 4, 5 | cantnfcl 9681 | . . . . . . 7 ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom OrdIso( E , (𝐹 supp ∅)) ∈ ω)) |
| 15 | 14 | simpld 494 | . . . . . 6 ⊢ (𝜑 → E We (𝐹 supp ∅)) |
| 16 | 4 | oiiso 9551 | . . . . . 6 ⊢ (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅))) |
| 17 | 9, 15, 16 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅))) |
| 18 | isof1o 7316 | . . . . 5 ⊢ (OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅)) → OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–1-1-onto→(𝐹 supp ∅)) | |
| 19 | f1ofo 6825 | . . . . 5 ⊢ (OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–1-1-onto→(𝐹 supp ∅) → OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–onto→(𝐹 supp ∅)) | |
| 20 | foima 6795 | . . . . 5 ⊢ (OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–onto→(𝐹 supp ∅) → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) = (𝐹 supp ∅)) | |
| 21 | 17, 18, 19, 20 | 4syl 19 | . . . 4 ⊢ (𝜑 → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) = (𝐹 supp ∅)) |
| 22 | cantnflt2.s | . . . 4 ⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐶) | |
| 23 | 21, 22 | eqsstrd 3993 | . . 3 ⊢ (𝜑 → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) ⊆ 𝐶) |
| 24 | 1, 2, 3, 4, 5, 6, 8, 12, 13, 23 | cantnflt 9686 | . 2 ⊢ (𝜑 → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝐹 supp ∅))) ∈ (𝐴 ↑o 𝐶)) |
| 25 | 7, 24 | eqeltrd 2834 | 1 ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴 ↑o 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 E cep 5552 We wwe 5605 dom cdm 5654 “ cima 5657 Oncon0 6352 suc csuc 6354 –onto→wfo 6529 –1-1-onto→wf1o 6530 ‘cfv 6531 Isom wiso 6532 (class class class)co 7405 ∈ cmpo 7407 ωcom 7861 supp csupp 8159 seqωcseqom 8461 +o coa 8477 ·o comu 8478 ↑o coe 8479 OrdIsocoi 9523 CNF ccnf 9675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-seqom 8462 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-oexp 8486 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-oi 9524 df-cnf 9676 |
| This theorem is referenced by: cantnff 9688 cantnflem1d 9702 cnfcom3lem 9717 cantnfresb 43348 |
| Copyright terms: Public domain | W3C validator |