| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cantnflt2 | Structured version Visualization version GIF version | ||
| Description: An upper bound on the CNF function. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 29-Jun-2019.) |
| Ref | Expression |
|---|---|
| cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
| cantnflt2.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| cantnflt2.a | ⊢ (𝜑 → ∅ ∈ 𝐴) |
| cantnflt2.c | ⊢ (𝜑 → 𝐶 ∈ On) |
| cantnflt2.s | ⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| cantnflt2 | ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴 ↑o 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | . . 3 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
| 2 | cantnfs.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 3 | cantnfs.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 4 | eqid 2731 | . . 3 ⊢ OrdIso( E , (𝐹 supp ∅)) = OrdIso( E , (𝐹 supp ∅)) | |
| 5 | cantnflt2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
| 6 | eqid 2731 | . . 3 ⊢ seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅) | |
| 7 | 1, 2, 3, 4, 5, 6 | cantnfval 9558 | . 2 ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝐹 supp ∅)))) |
| 8 | cantnflt2.a | . . 3 ⊢ (𝜑 → ∅ ∈ 𝐴) | |
| 9 | ovexd 7381 | . . . 4 ⊢ (𝜑 → (𝐹 supp ∅) ∈ V) | |
| 10 | 4 | oion 9422 | . . . 4 ⊢ ((𝐹 supp ∅) ∈ V → dom OrdIso( E , (𝐹 supp ∅)) ∈ On) |
| 11 | sucidg 6389 | . . . 4 ⊢ (dom OrdIso( E , (𝐹 supp ∅)) ∈ On → dom OrdIso( E , (𝐹 supp ∅)) ∈ suc dom OrdIso( E , (𝐹 supp ∅))) | |
| 12 | 9, 10, 11 | 3syl 18 | . . 3 ⊢ (𝜑 → dom OrdIso( E , (𝐹 supp ∅)) ∈ suc dom OrdIso( E , (𝐹 supp ∅))) |
| 13 | cantnflt2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ On) | |
| 14 | 1, 2, 3, 4, 5 | cantnfcl 9557 | . . . . . . 7 ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom OrdIso( E , (𝐹 supp ∅)) ∈ ω)) |
| 15 | 14 | simpld 494 | . . . . . 6 ⊢ (𝜑 → E We (𝐹 supp ∅)) |
| 16 | 4 | oiiso 9423 | . . . . . 6 ⊢ (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅))) |
| 17 | 9, 15, 16 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅))) |
| 18 | isof1o 7257 | . . . . 5 ⊢ (OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅)) → OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–1-1-onto→(𝐹 supp ∅)) | |
| 19 | f1ofo 6770 | . . . . 5 ⊢ (OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–1-1-onto→(𝐹 supp ∅) → OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–onto→(𝐹 supp ∅)) | |
| 20 | foima 6740 | . . . . 5 ⊢ (OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–onto→(𝐹 supp ∅) → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) = (𝐹 supp ∅)) | |
| 21 | 17, 18, 19, 20 | 4syl 19 | . . . 4 ⊢ (𝜑 → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) = (𝐹 supp ∅)) |
| 22 | cantnflt2.s | . . . 4 ⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐶) | |
| 23 | 21, 22 | eqsstrd 3969 | . . 3 ⊢ (𝜑 → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) ⊆ 𝐶) |
| 24 | 1, 2, 3, 4, 5, 6, 8, 12, 13, 23 | cantnflt 9562 | . 2 ⊢ (𝜑 → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝐹 supp ∅))) ∈ (𝐴 ↑o 𝐶)) |
| 25 | 7, 24 | eqeltrd 2831 | 1 ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴 ↑o 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 ∅c0 4283 E cep 5515 We wwe 5568 dom cdm 5616 “ cima 5619 Oncon0 6306 suc csuc 6308 –onto→wfo 6479 –1-1-onto→wf1o 6480 ‘cfv 6481 Isom wiso 6482 (class class class)co 7346 ∈ cmpo 7348 ωcom 7796 supp csupp 8090 seqωcseqom 8366 +o coa 8382 ·o comu 8383 ↑o coe 8384 OrdIsocoi 9395 CNF ccnf 9551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-seqom 8367 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-oexp 8391 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-cnf 9552 |
| This theorem is referenced by: cantnff 9564 cantnflem1d 9578 cnfcom3lem 9593 cantnfresb 43363 |
| Copyright terms: Public domain | W3C validator |