![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cantnflt2 | Structured version Visualization version GIF version |
Description: An upper bound on the CNF function. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 29-Jun-2019.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
cantnflt2.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
cantnflt2.a | ⊢ (𝜑 → ∅ ∈ 𝐴) |
cantnflt2.c | ⊢ (𝜑 → 𝐶 ∈ On) |
cantnflt2.s | ⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐶) |
Ref | Expression |
---|---|
cantnflt2 | ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴 ↑o 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.s | . . 3 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
2 | cantnfs.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
3 | cantnfs.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ On) | |
4 | eqid 2728 | . . 3 ⊢ OrdIso( E , (𝐹 supp ∅)) = OrdIso( E , (𝐹 supp ∅)) | |
5 | cantnflt2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
6 | eqid 2728 | . . 3 ⊢ seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅) | |
7 | 1, 2, 3, 4, 5, 6 | cantnfval 9686 | . 2 ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝐹 supp ∅)))) |
8 | cantnflt2.a | . . 3 ⊢ (𝜑 → ∅ ∈ 𝐴) | |
9 | ovexd 7450 | . . . 4 ⊢ (𝜑 → (𝐹 supp ∅) ∈ V) | |
10 | 4 | oion 9554 | . . . 4 ⊢ ((𝐹 supp ∅) ∈ V → dom OrdIso( E , (𝐹 supp ∅)) ∈ On) |
11 | sucidg 6445 | . . . 4 ⊢ (dom OrdIso( E , (𝐹 supp ∅)) ∈ On → dom OrdIso( E , (𝐹 supp ∅)) ∈ suc dom OrdIso( E , (𝐹 supp ∅))) | |
12 | 9, 10, 11 | 3syl 18 | . . 3 ⊢ (𝜑 → dom OrdIso( E , (𝐹 supp ∅)) ∈ suc dom OrdIso( E , (𝐹 supp ∅))) |
13 | cantnflt2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ On) | |
14 | 1, 2, 3, 4, 5 | cantnfcl 9685 | . . . . . . 7 ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom OrdIso( E , (𝐹 supp ∅)) ∈ ω)) |
15 | 14 | simpld 494 | . . . . . 6 ⊢ (𝜑 → E We (𝐹 supp ∅)) |
16 | 4 | oiiso 9555 | . . . . . 6 ⊢ (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅))) |
17 | 9, 15, 16 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅))) |
18 | isof1o 7326 | . . . . 5 ⊢ (OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅)) → OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–1-1-onto→(𝐹 supp ∅)) | |
19 | f1ofo 6841 | . . . . 5 ⊢ (OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–1-1-onto→(𝐹 supp ∅) → OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–onto→(𝐹 supp ∅)) | |
20 | foima 6811 | . . . . 5 ⊢ (OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–onto→(𝐹 supp ∅) → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) = (𝐹 supp ∅)) | |
21 | 17, 18, 19, 20 | 4syl 19 | . . . 4 ⊢ (𝜑 → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) = (𝐹 supp ∅)) |
22 | cantnflt2.s | . . . 4 ⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐶) | |
23 | 21, 22 | eqsstrd 4017 | . . 3 ⊢ (𝜑 → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) ⊆ 𝐶) |
24 | 1, 2, 3, 4, 5, 6, 8, 12, 13, 23 | cantnflt 9690 | . 2 ⊢ (𝜑 → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝐹 supp ∅))) ∈ (𝐴 ↑o 𝐶)) |
25 | 7, 24 | eqeltrd 2829 | 1 ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴 ↑o 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ⊆ wss 3945 ∅c0 4319 E cep 5576 We wwe 5627 dom cdm 5673 “ cima 5676 Oncon0 6364 suc csuc 6366 –onto→wfo 6541 –1-1-onto→wf1o 6542 ‘cfv 6543 Isom wiso 6544 (class class class)co 7415 ∈ cmpo 7417 ωcom 7865 supp csupp 8160 seqωcseqom 8462 +o coa 8478 ·o comu 8479 ↑o coe 8480 OrdIsocoi 9527 CNF ccnf 9679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-supp 8161 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-seqom 8463 df-1o 8481 df-2o 8482 df-oadd 8485 df-omul 8486 df-oexp 8487 df-map 8841 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-fsupp 9381 df-oi 9528 df-cnf 9680 |
This theorem is referenced by: cantnff 9692 cantnflem1d 9706 cnfcom3lem 9721 cantnfresb 42744 |
Copyright terms: Public domain | W3C validator |