MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflt2 Structured version   Visualization version   GIF version

Theorem cantnflt2 9563
Description: An upper bound on the CNF function. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 29-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnflt2.f (𝜑𝐹𝑆)
cantnflt2.a (𝜑 → ∅ ∈ 𝐴)
cantnflt2.c (𝜑𝐶 ∈ On)
cantnflt2.s (𝜑 → (𝐹 supp ∅) ⊆ 𝐶)
Assertion
Ref Expression
cantnflt2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶))

Proof of Theorem cantnflt2
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 eqid 2731 . . 3 OrdIso( E , (𝐹 supp ∅)) = OrdIso( E , (𝐹 supp ∅))
5 cantnflt2.f . . 3 (𝜑𝐹𝑆)
6 eqid 2731 . . 3 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅)
71, 2, 3, 4, 5, 6cantnfval 9558 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝐹 supp ∅))))
8 cantnflt2.a . . 3 (𝜑 → ∅ ∈ 𝐴)
9 ovexd 7381 . . . 4 (𝜑 → (𝐹 supp ∅) ∈ V)
104oion 9422 . . . 4 ((𝐹 supp ∅) ∈ V → dom OrdIso( E , (𝐹 supp ∅)) ∈ On)
11 sucidg 6389 . . . 4 (dom OrdIso( E , (𝐹 supp ∅)) ∈ On → dom OrdIso( E , (𝐹 supp ∅)) ∈ suc dom OrdIso( E , (𝐹 supp ∅)))
129, 10, 113syl 18 . . 3 (𝜑 → dom OrdIso( E , (𝐹 supp ∅)) ∈ suc dom OrdIso( E , (𝐹 supp ∅)))
13 cantnflt2.c . . 3 (𝜑𝐶 ∈ On)
141, 2, 3, 4, 5cantnfcl 9557 . . . . . . 7 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom OrdIso( E , (𝐹 supp ∅)) ∈ ω))
1514simpld 494 . . . . . 6 (𝜑 → E We (𝐹 supp ∅))
164oiiso 9423 . . . . . 6 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅)))
179, 15, 16syl2anc 584 . . . . 5 (𝜑 → OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅)))
18 isof1o 7257 . . . . 5 (OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅)) → OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–1-1-onto→(𝐹 supp ∅))
19 f1ofo 6770 . . . . 5 (OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–1-1-onto→(𝐹 supp ∅) → OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–onto→(𝐹 supp ∅))
20 foima 6740 . . . . 5 (OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–onto→(𝐹 supp ∅) → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) = (𝐹 supp ∅))
2117, 18, 19, 204syl 19 . . . 4 (𝜑 → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) = (𝐹 supp ∅))
22 cantnflt2.s . . . 4 (𝜑 → (𝐹 supp ∅) ⊆ 𝐶)
2321, 22eqsstrd 3969 . . 3 (𝜑 → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) ⊆ 𝐶)
241, 2, 3, 4, 5, 6, 8, 12, 13, 23cantnflt 9562 . 2 (𝜑 → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝐹 supp ∅))) ∈ (𝐴o 𝐶))
257, 24eqeltrd 2831 1 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴o 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  wss 3902  c0 4283   E cep 5515   We wwe 5568  dom cdm 5616  cima 5619  Oncon0 6306  suc csuc 6308  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481   Isom wiso 6482  (class class class)co 7346  cmpo 7348  ωcom 7796   supp csupp 8090  seqωcseqom 8366   +o coa 8382   ·o comu 8383  o coe 8384  OrdIsocoi 9395   CNF ccnf 9551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-seqom 8367  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-oexp 8391  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-cnf 9552
This theorem is referenced by:  cantnff  9564  cantnflem1d  9578  cnfcom3lem  9593  cantnfresb  43363
  Copyright terms: Public domain W3C validator