![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cantnflt2 | Structured version Visualization version GIF version |
Description: An upper bound on the CNF function. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 29-Jun-2019.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
cantnflt2.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
cantnflt2.a | ⊢ (𝜑 → ∅ ∈ 𝐴) |
cantnflt2.c | ⊢ (𝜑 → 𝐶 ∈ On) |
cantnflt2.s | ⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐶) |
Ref | Expression |
---|---|
cantnflt2 | ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴 ↑o 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.s | . . 3 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
2 | cantnfs.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
3 | cantnfs.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ On) | |
4 | eqid 2735 | . . 3 ⊢ OrdIso( E , (𝐹 supp ∅)) = OrdIso( E , (𝐹 supp ∅)) | |
5 | cantnflt2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
6 | eqid 2735 | . . 3 ⊢ seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅) | |
7 | 1, 2, 3, 4, 5, 6 | cantnfval 9706 | . 2 ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝐹 supp ∅)))) |
8 | cantnflt2.a | . . 3 ⊢ (𝜑 → ∅ ∈ 𝐴) | |
9 | ovexd 7466 | . . . 4 ⊢ (𝜑 → (𝐹 supp ∅) ∈ V) | |
10 | 4 | oion 9574 | . . . 4 ⊢ ((𝐹 supp ∅) ∈ V → dom OrdIso( E , (𝐹 supp ∅)) ∈ On) |
11 | sucidg 6467 | . . . 4 ⊢ (dom OrdIso( E , (𝐹 supp ∅)) ∈ On → dom OrdIso( E , (𝐹 supp ∅)) ∈ suc dom OrdIso( E , (𝐹 supp ∅))) | |
12 | 9, 10, 11 | 3syl 18 | . . 3 ⊢ (𝜑 → dom OrdIso( E , (𝐹 supp ∅)) ∈ suc dom OrdIso( E , (𝐹 supp ∅))) |
13 | cantnflt2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ On) | |
14 | 1, 2, 3, 4, 5 | cantnfcl 9705 | . . . . . . 7 ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom OrdIso( E , (𝐹 supp ∅)) ∈ ω)) |
15 | 14 | simpld 494 | . . . . . 6 ⊢ (𝜑 → E We (𝐹 supp ∅)) |
16 | 4 | oiiso 9575 | . . . . . 6 ⊢ (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅))) |
17 | 9, 15, 16 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅))) |
18 | isof1o 7343 | . . . . 5 ⊢ (OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅)) → OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–1-1-onto→(𝐹 supp ∅)) | |
19 | f1ofo 6856 | . . . . 5 ⊢ (OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–1-1-onto→(𝐹 supp ∅) → OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–onto→(𝐹 supp ∅)) | |
20 | foima 6826 | . . . . 5 ⊢ (OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–onto→(𝐹 supp ∅) → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) = (𝐹 supp ∅)) | |
21 | 17, 18, 19, 20 | 4syl 19 | . . . 4 ⊢ (𝜑 → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) = (𝐹 supp ∅)) |
22 | cantnflt2.s | . . . 4 ⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐶) | |
23 | 21, 22 | eqsstrd 4034 | . . 3 ⊢ (𝜑 → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) ⊆ 𝐶) |
24 | 1, 2, 3, 4, 5, 6, 8, 12, 13, 23 | cantnflt 9710 | . 2 ⊢ (𝜑 → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·o (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝐹 supp ∅))) ∈ (𝐴 ↑o 𝐶)) |
25 | 7, 24 | eqeltrd 2839 | 1 ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴 ↑o 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 ∅c0 4339 E cep 5588 We wwe 5640 dom cdm 5689 “ cima 5692 Oncon0 6386 suc csuc 6388 –onto→wfo 6561 –1-1-onto→wf1o 6562 ‘cfv 6563 Isom wiso 6564 (class class class)co 7431 ∈ cmpo 7433 ωcom 7887 supp csupp 8184 seqωcseqom 8486 +o coa 8502 ·o comu 8503 ↑o coe 8504 OrdIsocoi 9547 CNF ccnf 9699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-seqom 8487 df-1o 8505 df-2o 8506 df-oadd 8509 df-omul 8510 df-oexp 8511 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-oi 9548 df-cnf 9700 |
This theorem is referenced by: cantnff 9712 cantnflem1d 9726 cnfcom3lem 9741 cantnfresb 43314 |
Copyright terms: Public domain | W3C validator |