![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexdif1enOLD | Structured version Visualization version GIF version |
Description: Obsolete version of rexdif1en 9154 as of 5-Jan-2025. (Contributed by BTernaryTau, 26-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rexdif1enOLD | ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 8945 | . 2 ⊢ (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀) | |
2 | 19.42v 1949 | . . 3 ⊢ (∃𝑓(𝑀 ∈ ω ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) ↔ (𝑀 ∈ ω ∧ ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀)) | |
3 | sucidg 6435 | . . . . . 6 ⊢ (𝑀 ∈ ω → 𝑀 ∈ suc 𝑀) | |
4 | f1ocnvdm 7275 | . . . . . . 7 ⊢ ((𝑓:𝐴–1-1-onto→suc 𝑀 ∧ 𝑀 ∈ suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) | |
5 | 4 | ancoms 458 | . . . . . 6 ⊢ ((𝑀 ∈ suc 𝑀 ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
6 | 3, 5 | sylan 579 | . . . . 5 ⊢ ((𝑀 ∈ ω ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
7 | vex 3470 | . . . . . 6 ⊢ 𝑓 ∈ V | |
8 | dif1enlemOLD 9153 | . . . . . 6 ⊢ ((𝑓 ∈ V ∧ 𝑀 ∈ ω ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) | |
9 | 7, 8 | mp3an1 1444 | . . . . 5 ⊢ ((𝑀 ∈ ω ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) |
10 | sneq 4630 | . . . . . . . 8 ⊢ (𝑥 = (◡𝑓‘𝑀) → {𝑥} = {(◡𝑓‘𝑀)}) | |
11 | 10 | difeq2d 4114 | . . . . . . 7 ⊢ (𝑥 = (◡𝑓‘𝑀) → (𝐴 ∖ {𝑥}) = (𝐴 ∖ {(◡𝑓‘𝑀)})) |
12 | 11 | breq1d 5148 | . . . . . 6 ⊢ (𝑥 = (◡𝑓‘𝑀) → ((𝐴 ∖ {𝑥}) ≈ 𝑀 ↔ (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀)) |
13 | 12 | rspcev 3604 | . . . . 5 ⊢ (((◡𝑓‘𝑀) ∈ 𝐴 ∧ (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
14 | 6, 9, 13 | syl2anc 583 | . . . 4 ⊢ ((𝑀 ∈ ω ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
15 | 14 | exlimiv 1925 | . . 3 ⊢ (∃𝑓(𝑀 ∈ ω ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
16 | 2, 15 | sylbir 234 | . 2 ⊢ ((𝑀 ∈ ω ∧ ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
17 | 1, 16 | sylan2b 593 | 1 ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∃wrex 3062 Vcvv 3466 ∖ cdif 3937 {csn 4620 class class class wbr 5138 ◡ccnv 5665 suc csuc 6356 –1-1-onto→wf1o 6532 ‘cfv 6533 ωcom 7848 ≈ cen 8932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-ord 6357 df-on 6358 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-om 7849 df-en 8936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |