MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexdif1enOLD Structured version   Visualization version   GIF version

Theorem rexdif1enOLD 9083
Description: Obsolete version of rexdif1en 9082 as of 5-Jan-2025. (Contributed by BTernaryTau, 26-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
rexdif1enOLD ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀

Proof of Theorem rexdif1enOLD
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 8889 . 2 (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀)
2 19.42v 1953 . . 3 (∃𝑓(𝑀 ∈ ω ∧ 𝑓:𝐴1-1-onto→suc 𝑀) ↔ (𝑀 ∈ ω ∧ ∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀))
3 sucidg 6394 . . . . . 6 (𝑀 ∈ ω → 𝑀 ∈ suc 𝑀)
4 f1ocnvdm 7226 . . . . . . 7 ((𝑓:𝐴1-1-onto→suc 𝑀𝑀 ∈ suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
54ancoms 458 . . . . . 6 ((𝑀 ∈ suc 𝑀𝑓:𝐴1-1-onto→suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
63, 5sylan 580 . . . . 5 ((𝑀 ∈ ω ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → (𝑓𝑀) ∈ 𝐴)
7 vex 3442 . . . . . 6 𝑓 ∈ V
8 dif1enlemOLD 9081 . . . . . 6 ((𝑓 ∈ V ∧ 𝑀 ∈ ω ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀)
97, 8mp3an1 1450 . . . . 5 ((𝑀 ∈ ω ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀)
10 sneq 4589 . . . . . . . 8 (𝑥 = (𝑓𝑀) → {𝑥} = {(𝑓𝑀)})
1110difeq2d 4079 . . . . . . 7 (𝑥 = (𝑓𝑀) → (𝐴 ∖ {𝑥}) = (𝐴 ∖ {(𝑓𝑀)}))
1211breq1d 5105 . . . . . 6 (𝑥 = (𝑓𝑀) → ((𝐴 ∖ {𝑥}) ≈ 𝑀 ↔ (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀))
1312rspcev 3579 . . . . 5 (((𝑓𝑀) ∈ 𝐴 ∧ (𝐴 ∖ {(𝑓𝑀)}) ≈ 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
146, 9, 13syl2anc 584 . . . 4 ((𝑀 ∈ ω ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
1514exlimiv 1930 . . 3 (∃𝑓(𝑀 ∈ ω ∧ 𝑓:𝐴1-1-onto→suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
162, 15sylbir 235 . 2 ((𝑀 ∈ ω ∧ ∃𝑓 𝑓:𝐴1-1-onto→suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
171, 16sylan2b 594 1 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  Vcvv 3438  cdif 3902  {csn 4579   class class class wbr 5095  ccnv 5622  suc csuc 6313  1-1-ontowf1o 6485  cfv 6486  ωcom 7806  cen 8876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7807  df-en 8880
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator