| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexdif1enOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of rexdif1en 9082 as of 5-Jan-2025. (Contributed by BTernaryTau, 26-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rexdif1enOLD | ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 8889 | . 2 ⊢ (𝐴 ≈ suc 𝑀 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀) | |
| 2 | 19.42v 1953 | . . 3 ⊢ (∃𝑓(𝑀 ∈ ω ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) ↔ (𝑀 ∈ ω ∧ ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀)) | |
| 3 | sucidg 6394 | . . . . . 6 ⊢ (𝑀 ∈ ω → 𝑀 ∈ suc 𝑀) | |
| 4 | f1ocnvdm 7226 | . . . . . . 7 ⊢ ((𝑓:𝐴–1-1-onto→suc 𝑀 ∧ 𝑀 ∈ suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) | |
| 5 | 4 | ancoms 458 | . . . . . 6 ⊢ ((𝑀 ∈ suc 𝑀 ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
| 6 | 3, 5 | sylan 580 | . . . . 5 ⊢ ((𝑀 ∈ ω ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (◡𝑓‘𝑀) ∈ 𝐴) |
| 7 | vex 3442 | . . . . . 6 ⊢ 𝑓 ∈ V | |
| 8 | dif1enlemOLD 9081 | . . . . . 6 ⊢ ((𝑓 ∈ V ∧ 𝑀 ∈ ω ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) | |
| 9 | 7, 8 | mp3an1 1450 | . . . . 5 ⊢ ((𝑀 ∈ ω ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) |
| 10 | sneq 4589 | . . . . . . . 8 ⊢ (𝑥 = (◡𝑓‘𝑀) → {𝑥} = {(◡𝑓‘𝑀)}) | |
| 11 | 10 | difeq2d 4079 | . . . . . . 7 ⊢ (𝑥 = (◡𝑓‘𝑀) → (𝐴 ∖ {𝑥}) = (𝐴 ∖ {(◡𝑓‘𝑀)})) |
| 12 | 11 | breq1d 5105 | . . . . . 6 ⊢ (𝑥 = (◡𝑓‘𝑀) → ((𝐴 ∖ {𝑥}) ≈ 𝑀 ↔ (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀)) |
| 13 | 12 | rspcev 3579 | . . . . 5 ⊢ (((◡𝑓‘𝑀) ∈ 𝐴 ∧ (𝐴 ∖ {(◡𝑓‘𝑀)}) ≈ 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
| 14 | 6, 9, 13 | syl2anc 584 | . . . 4 ⊢ ((𝑀 ∈ ω ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
| 15 | 14 | exlimiv 1930 | . . 3 ⊢ (∃𝑓(𝑀 ∈ ω ∧ 𝑓:𝐴–1-1-onto→suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
| 16 | 2, 15 | sylbir 235 | . 2 ⊢ ((𝑀 ∈ ω ∧ ∃𝑓 𝑓:𝐴–1-1-onto→suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
| 17 | 1, 16 | sylan2b 594 | 1 ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 Vcvv 3438 ∖ cdif 3902 {csn 4579 class class class wbr 5095 ◡ccnv 5622 suc csuc 6313 –1-1-onto→wf1o 6485 ‘cfv 6486 ωcom 7806 ≈ cen 8876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7807 df-en 8880 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |