| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapf2vala | Structured version Visualization version GIF version | ||
| Description: The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapf1a.o | ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) |
| swapf1a.s | ⊢ 𝑆 = (𝐶 ×c 𝐷) |
| swapf1a.b | ⊢ 𝐵 = (Base‘𝑆) |
| swapf1a.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| swapf2a.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| swapf2a.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝑆)) |
| Ref | Expression |
|---|---|
| swapf2vala | ⊢ (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ∪ ◡{𝑓})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swapf1a.s | . . . 4 ⊢ 𝑆 = (𝐶 ×c 𝐷) | |
| 2 | swapf1a.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 3 | swapf1a.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 4 | 1, 2, 3 | elxpcbasex1 49280 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
| 5 | 1, 2, 3 | elxpcbasex2 49282 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 6 | swapf2a.h | . . 3 ⊢ (𝜑 → 𝐻 = (Hom ‘𝑆)) | |
| 7 | swapf1a.o | . . 3 ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) | |
| 8 | 4, 5, 1, 2, 6, 7 | swapf2fval 49297 | . 2 ⊢ (𝜑 → 𝑃 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓}))) |
| 9 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑢 = 𝑋 ∧ 𝑣 = 𝑌)) → 𝑢 = 𝑋) | |
| 10 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑢 = 𝑋 ∧ 𝑣 = 𝑌)) → 𝑣 = 𝑌) | |
| 11 | 9, 10 | oveq12d 7359 | . . 3 ⊢ ((𝜑 ∧ (𝑢 = 𝑋 ∧ 𝑣 = 𝑌)) → (𝑢𝐻𝑣) = (𝑋𝐻𝑌)) |
| 12 | 11 | mpteq1d 5176 | . 2 ⊢ ((𝜑 ∧ (𝑢 = 𝑋 ∧ 𝑣 = 𝑌)) → (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓}) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ∪ ◡{𝑓})) |
| 13 | swapf2a.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 14 | ovex 7374 | . . . 4 ⊢ (𝑋𝐻𝑌) ∈ V | |
| 15 | 14 | mptex 7152 | . . 3 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) ↦ ∪ ◡{𝑓}) ∈ V |
| 16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ ∪ ◡{𝑓}) ∈ V) |
| 17 | 8, 12, 3, 13, 16 | ovmpod 7493 | 1 ⊢ (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ∪ ◡{𝑓})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4571 〈cop 4577 ∪ cuni 4854 ↦ cmpt 5167 ◡ccnv 5610 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 Hom chom 17167 ×c cxpc 18069 swapF cswapf 49291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-1cn 11059 ax-addcl 11061 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12121 df-slot 17088 df-ndx 17100 df-base 17116 df-xpc 18073 df-swapf 49292 |
| This theorem is referenced by: swapf2a 49303 swapf2val 49305 swapf2f1oaALT 49310 |
| Copyright terms: Public domain | W3C validator |