Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf2vala Structured version   Visualization version   GIF version

Theorem swapf2vala 48993
Description: The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
swapf1a.o (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
swapf1a.s 𝑆 = (𝐶 ×c 𝐷)
swapf1a.b 𝐵 = (Base‘𝑆)
swapf1a.x (𝜑𝑋𝐵)
swapf2a.y (𝜑𝑌𝐵)
swapf2a.h (𝜑𝐻 = (Hom ‘𝑆))
Assertion
Ref Expression
swapf2vala (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}))
Distinct variable groups:   𝑓,𝐻   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝑃(𝑓)   𝑆(𝑓)   𝑂(𝑓)

Proof of Theorem swapf2vala
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 swapf1a.s . . . 4 𝑆 = (𝐶 ×c 𝐷)
2 swapf1a.b . . . 4 𝐵 = (Base‘𝑆)
3 swapf1a.x . . . 4 (𝜑𝑋𝐵)
41, 2, 3elxpcbasex1 48971 . . 3 (𝜑𝐶 ∈ V)
51, 2, 3elxpcbasex2 48973 . . 3 (𝜑𝐷 ∈ V)
6 swapf2a.h . . 3 (𝜑𝐻 = (Hom ‘𝑆))
7 swapf1a.o . . 3 (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
84, 5, 1, 2, 6, 7swapf2fval 48988 . 2 (𝜑𝑃 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓})))
9 simprl 770 . . . 4 ((𝜑 ∧ (𝑢 = 𝑋𝑣 = 𝑌)) → 𝑢 = 𝑋)
10 simprr 772 . . . 4 ((𝜑 ∧ (𝑢 = 𝑋𝑣 = 𝑌)) → 𝑣 = 𝑌)
119, 10oveq12d 7417 . . 3 ((𝜑 ∧ (𝑢 = 𝑋𝑣 = 𝑌)) → (𝑢𝐻𝑣) = (𝑋𝐻𝑌))
1211mpteq1d 5207 . 2 ((𝜑 ∧ (𝑢 = 𝑋𝑣 = 𝑌)) → (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}))
13 swapf2a.y . 2 (𝜑𝑌𝐵)
14 ovex 7432 . . . 4 (𝑋𝐻𝑌) ∈ V
1514mptex 7211 . . 3 (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}) ∈ V
1615a1i 11 . 2 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}) ∈ V)
178, 12, 3, 13, 16ovmpod 7553 1 (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3457  {csn 4599  cop 4605   cuni 4880  cmpt 5198  ccnv 5650  cfv 6527  (class class class)co 7399  Basecbs 17213  Hom chom 17267   ×c cxpc 18165  swapFcswapf 48982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-1cn 11179  ax-addcl 11181
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-nn 12233  df-slot 17186  df-ndx 17198  df-base 17214  df-xpc 18169  df-swapf 48983
This theorem is referenced by:  swapf2a  48994  swapf2val  48996  swapf2f1oaALT  49001
  Copyright terms: Public domain W3C validator