| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapf2vala | Structured version Visualization version GIF version | ||
| Description: The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapf1a.o | ⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) |
| swapf1a.s | ⊢ 𝑆 = (𝐶 ×c 𝐷) |
| swapf1a.b | ⊢ 𝐵 = (Base‘𝑆) |
| swapf1a.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| swapf2a.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| swapf2a.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝑆)) |
| Ref | Expression |
|---|---|
| swapf2vala | ⊢ (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ∪ ◡{𝑓})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swapf1a.s | . . . 4 ⊢ 𝑆 = (𝐶 ×c 𝐷) | |
| 2 | swapf1a.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 3 | swapf1a.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 4 | 1, 2, 3 | elxpcbasex1 48927 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
| 5 | 1, 2, 3 | elxpcbasex2 48929 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 6 | swapf2a.h | . . 3 ⊢ (𝜑 → 𝐻 = (Hom ‘𝑆)) | |
| 7 | swapf1a.o | . . 3 ⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) | |
| 8 | 4, 5, 1, 2, 6, 7 | swapf2fval 48944 | . 2 ⊢ (𝜑 → 𝑃 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓}))) |
| 9 | simprl 771 | . . . 4 ⊢ ((𝜑 ∧ (𝑢 = 𝑋 ∧ 𝑣 = 𝑌)) → 𝑢 = 𝑋) | |
| 10 | simprr 773 | . . . 4 ⊢ ((𝜑 ∧ (𝑢 = 𝑋 ∧ 𝑣 = 𝑌)) → 𝑣 = 𝑌) | |
| 11 | 9, 10 | oveq12d 7447 | . . 3 ⊢ ((𝜑 ∧ (𝑢 = 𝑋 ∧ 𝑣 = 𝑌)) → (𝑢𝐻𝑣) = (𝑋𝐻𝑌)) |
| 12 | 11 | mpteq1d 5235 | . 2 ⊢ ((𝜑 ∧ (𝑢 = 𝑋 ∧ 𝑣 = 𝑌)) → (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓}) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ∪ ◡{𝑓})) |
| 13 | swapf2a.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 14 | ovex 7462 | . . . 4 ⊢ (𝑋𝐻𝑌) ∈ V | |
| 15 | 14 | mptex 7241 | . . 3 ⊢ (𝑓 ∈ (𝑋𝐻𝑌) ↦ ∪ ◡{𝑓}) ∈ V |
| 16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ ∪ ◡{𝑓}) ∈ V) |
| 17 | 8, 12, 3, 13, 16 | ovmpod 7582 | 1 ⊢ (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ∪ ◡{𝑓})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3479 {csn 4624 〈cop 4630 ∪ cuni 4905 ↦ cmpt 5223 ◡ccnv 5682 ‘cfv 6559 (class class class)co 7429 Basecbs 17243 Hom chom 17304 ×c cxpc 18209 swapFcswapf 48938 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-1cn 11209 ax-addcl 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-1st 8010 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-nn 12263 df-slot 17215 df-ndx 17227 df-base 17244 df-xpc 18213 df-swapf 48939 |
| This theorem is referenced by: swapf2a 48950 swapf2val 48952 swapf2f1oaALT 48957 |
| Copyright terms: Public domain | W3C validator |