Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf2vala Structured version   Visualization version   GIF version

Theorem swapf2vala 49241
Description: The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
swapf1a.o (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
swapf1a.s 𝑆 = (𝐶 ×c 𝐷)
swapf1a.b 𝐵 = (Base‘𝑆)
swapf1a.x (𝜑𝑋𝐵)
swapf2a.y (𝜑𝑌𝐵)
swapf2a.h (𝜑𝐻 = (Hom ‘𝑆))
Assertion
Ref Expression
swapf2vala (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}))
Distinct variable groups:   𝑓,𝐻   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝑃(𝑓)   𝑆(𝑓)   𝑂(𝑓)

Proof of Theorem swapf2vala
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 swapf1a.s . . . 4 𝑆 = (𝐶 ×c 𝐷)
2 swapf1a.b . . . 4 𝐵 = (Base‘𝑆)
3 swapf1a.x . . . 4 (𝜑𝑋𝐵)
41, 2, 3elxpcbasex1 49219 . . 3 (𝜑𝐶 ∈ V)
51, 2, 3elxpcbasex2 49221 . . 3 (𝜑𝐷 ∈ V)
6 swapf2a.h . . 3 (𝜑𝐻 = (Hom ‘𝑆))
7 swapf1a.o . . 3 (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
84, 5, 1, 2, 6, 7swapf2fval 49236 . 2 (𝜑𝑃 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓})))
9 simprl 770 . . . 4 ((𝜑 ∧ (𝑢 = 𝑋𝑣 = 𝑌)) → 𝑢 = 𝑋)
10 simprr 772 . . . 4 ((𝜑 ∧ (𝑢 = 𝑋𝑣 = 𝑌)) → 𝑣 = 𝑌)
119, 10oveq12d 7407 . . 3 ((𝜑 ∧ (𝑢 = 𝑋𝑣 = 𝑌)) → (𝑢𝐻𝑣) = (𝑋𝐻𝑌))
1211mpteq1d 5199 . 2 ((𝜑 ∧ (𝑢 = 𝑋𝑣 = 𝑌)) → (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}))
13 swapf2a.y . 2 (𝜑𝑌𝐵)
14 ovex 7422 . . . 4 (𝑋𝐻𝑌) ∈ V
1514mptex 7199 . . 3 (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}) ∈ V
1615a1i 11 . 2 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}) ∈ V)
178, 12, 3, 13, 16ovmpod 7543 1 (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4591  cop 4597   cuni 4873  cmpt 5190  ccnv 5639  cfv 6513  (class class class)co 7389  Basecbs 17185  Hom chom 17237   ×c cxpc 18135   swapF cswapf 49230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-1cn 11132  ax-addcl 11134
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-nn 12188  df-slot 17158  df-ndx 17170  df-base 17186  df-xpc 18139  df-swapf 49231
This theorem is referenced by:  swapf2a  49242  swapf2val  49244  swapf2f1oaALT  49249
  Copyright terms: Public domain W3C validator