Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf2vala Structured version   Visualization version   GIF version

Theorem swapf2vala 49431
Description: The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
swapf1a.o (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
swapf1a.s 𝑆 = (𝐶 ×c 𝐷)
swapf1a.b 𝐵 = (Base‘𝑆)
swapf1a.x (𝜑𝑋𝐵)
swapf2a.y (𝜑𝑌𝐵)
swapf2a.h (𝜑𝐻 = (Hom ‘𝑆))
Assertion
Ref Expression
swapf2vala (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}))
Distinct variable groups:   𝑓,𝐻   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝑃(𝑓)   𝑆(𝑓)   𝑂(𝑓)

Proof of Theorem swapf2vala
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 swapf1a.s . . . 4 𝑆 = (𝐶 ×c 𝐷)
2 swapf1a.b . . . 4 𝐵 = (Base‘𝑆)
3 swapf1a.x . . . 4 (𝜑𝑋𝐵)
41, 2, 3elxpcbasex1 49409 . . 3 (𝜑𝐶 ∈ V)
51, 2, 3elxpcbasex2 49411 . . 3 (𝜑𝐷 ∈ V)
6 swapf2a.h . . 3 (𝜑𝐻 = (Hom ‘𝑆))
7 swapf1a.o . . 3 (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
84, 5, 1, 2, 6, 7swapf2fval 49426 . 2 (𝜑𝑃 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓})))
9 simprl 770 . . . 4 ((𝜑 ∧ (𝑢 = 𝑋𝑣 = 𝑌)) → 𝑢 = 𝑋)
10 simprr 772 . . . 4 ((𝜑 ∧ (𝑢 = 𝑋𝑣 = 𝑌)) → 𝑣 = 𝑌)
119, 10oveq12d 7373 . . 3 ((𝜑 ∧ (𝑢 = 𝑋𝑣 = 𝑌)) → (𝑢𝐻𝑣) = (𝑋𝐻𝑌))
1211mpteq1d 5185 . 2 ((𝜑 ∧ (𝑢 = 𝑋𝑣 = 𝑌)) → (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}))
13 swapf2a.y . 2 (𝜑𝑌𝐵)
14 ovex 7388 . . . 4 (𝑋𝐻𝑌) ∈ V
1514mptex 7166 . . 3 (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}) ∈ V
1615a1i 11 . 2 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}) ∈ V)
178, 12, 3, 13, 16ovmpod 7507 1 (𝜑 → (𝑋𝑃𝑌) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ {𝑓}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  {csn 4577  cop 4583   cuni 4860  cmpt 5176  ccnv 5620  cfv 6489  (class class class)co 7355  Basecbs 17127  Hom chom 17179   ×c cxpc 18082   swapF cswapf 49420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-1cn 11075  ax-addcl 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-nn 12137  df-slot 17100  df-ndx 17112  df-base 17128  df-xpc 18086  df-swapf 49421
This theorem is referenced by:  swapf2a  49432  swapf2val  49434  swapf2f1oaALT  49439
  Copyright terms: Public domain W3C validator