Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  taupilemrplb Structured version   Visualization version   GIF version

Theorem taupilemrplb 37321
Description: A set of positive reals has (in the reals) a lower bound. (Contributed by Jim Kingdon, 19-Feb-2019.)
Assertion
Ref Expression
taupilemrplb 𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+𝐴)𝑥𝑦
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem taupilemrplb
StepHypRef Expression
1 0re 11263 . 2 0 ∈ ℝ
2 inss1 4237 . . . . 5 (ℝ+𝐴) ⊆ ℝ+
32sseli 3979 . . . 4 (𝑦 ∈ (ℝ+𝐴) → 𝑦 ∈ ℝ+)
43rpge0d 13081 . . 3 (𝑦 ∈ (ℝ+𝐴) → 0 ≤ 𝑦)
54rgen 3063 . 2 𝑦 ∈ (ℝ+𝐴)0 ≤ 𝑦
6 breq1 5146 . . . 4 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
76ralbidv 3178 . . 3 (𝑥 = 0 → (∀𝑦 ∈ (ℝ+𝐴)𝑥𝑦 ↔ ∀𝑦 ∈ (ℝ+𝐴)0 ≤ 𝑦))
87rspcev 3622 . 2 ((0 ∈ ℝ ∧ ∀𝑦 ∈ (ℝ+𝐴)0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+𝐴)𝑥𝑦)
91, 5, 8mp2an 692 1 𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+𝐴)𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  wral 3061  wrex 3070  cin 3950   class class class wbr 5143  cr 11154  0cc0 11155  cle 11296  +crp 13034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-addrcl 11216  ax-rnegex 11226  ax-cnre 11228  ax-pre-lttri 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-rp 13035
This theorem is referenced by:  taupilem2  37323  taupi  37324
  Copyright terms: Public domain W3C validator