Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > taupilemrplb | Structured version Visualization version GIF version |
Description: A set of positive reals has (in the reals) a lower bound. (Contributed by Jim Kingdon, 19-Feb-2019.) |
Ref | Expression |
---|---|
taupilemrplb | ⊢ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)𝑥 ≤ 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10977 | . 2 ⊢ 0 ∈ ℝ | |
2 | inss1 4162 | . . . . 5 ⊢ (ℝ+ ∩ 𝐴) ⊆ ℝ+ | |
3 | 2 | sseli 3917 | . . . 4 ⊢ (𝑦 ∈ (ℝ+ ∩ 𝐴) → 𝑦 ∈ ℝ+) |
4 | 3 | rpge0d 12776 | . . 3 ⊢ (𝑦 ∈ (ℝ+ ∩ 𝐴) → 0 ≤ 𝑦) |
5 | 4 | rgen 3074 | . 2 ⊢ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)0 ≤ 𝑦 |
6 | breq1 5077 | . . . 4 ⊢ (𝑥 = 0 → (𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦)) | |
7 | 6 | ralbidv 3112 | . . 3 ⊢ (𝑥 = 0 → (∀𝑦 ∈ (ℝ+ ∩ 𝐴)𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)0 ≤ 𝑦)) |
8 | 7 | rspcev 3561 | . 2 ⊢ ((0 ∈ ℝ ∧ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)𝑥 ≤ 𝑦) |
9 | 1, 5, 8 | mp2an 689 | 1 ⊢ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)𝑥 ≤ 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ∩ cin 3886 class class class wbr 5074 ℝcr 10870 0cc0 10871 ≤ cle 11010 ℝ+crp 12730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-addrcl 10932 ax-rnegex 10942 ax-cnre 10944 ax-pre-lttri 10945 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-rp 12731 |
This theorem is referenced by: taupilem2 35493 taupi 35494 |
Copyright terms: Public domain | W3C validator |