| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > taupilemrplb | Structured version Visualization version GIF version | ||
| Description: A set of positive reals has (in the reals) a lower bound. (Contributed by Jim Kingdon, 19-Feb-2019.) |
| Ref | Expression |
|---|---|
| taupilemrplb | ⊢ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)𝑥 ≤ 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11152 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | inss1 4196 | . . . . 5 ⊢ (ℝ+ ∩ 𝐴) ⊆ ℝ+ | |
| 3 | 2 | sseli 3939 | . . . 4 ⊢ (𝑦 ∈ (ℝ+ ∩ 𝐴) → 𝑦 ∈ ℝ+) |
| 4 | 3 | rpge0d 12975 | . . 3 ⊢ (𝑦 ∈ (ℝ+ ∩ 𝐴) → 0 ≤ 𝑦) |
| 5 | 4 | rgen 3046 | . 2 ⊢ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)0 ≤ 𝑦 |
| 6 | breq1 5105 | . . . 4 ⊢ (𝑥 = 0 → (𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦)) | |
| 7 | 6 | ralbidv 3156 | . . 3 ⊢ (𝑥 = 0 → (∀𝑦 ∈ (ℝ+ ∩ 𝐴)𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)0 ≤ 𝑦)) |
| 8 | 7 | rspcev 3585 | . 2 ⊢ ((0 ∈ ℝ ∧ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)𝑥 ≤ 𝑦) |
| 9 | 1, 5, 8 | mp2an 692 | 1 ⊢ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)𝑥 ≤ 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∩ cin 3910 class class class wbr 5102 ℝcr 11043 0cc0 11044 ≤ cle 11185 ℝ+crp 12927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-addrcl 11105 ax-rnegex 11115 ax-cnre 11117 ax-pre-lttri 11118 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-rp 12928 |
| This theorem is referenced by: taupilem2 37303 taupi 37304 |
| Copyright terms: Public domain | W3C validator |