![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > taupilemrplb | Structured version Visualization version GIF version |
Description: A set of positive reals has (in the reals) a lower bound. (Contributed by Jim Kingdon, 19-Feb-2019.) |
Ref | Expression |
---|---|
taupilemrplb | ⊢ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)𝑥 ≤ 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11292 | . 2 ⊢ 0 ∈ ℝ | |
2 | inss1 4258 | . . . . 5 ⊢ (ℝ+ ∩ 𝐴) ⊆ ℝ+ | |
3 | 2 | sseli 4004 | . . . 4 ⊢ (𝑦 ∈ (ℝ+ ∩ 𝐴) → 𝑦 ∈ ℝ+) |
4 | 3 | rpge0d 13103 | . . 3 ⊢ (𝑦 ∈ (ℝ+ ∩ 𝐴) → 0 ≤ 𝑦) |
5 | 4 | rgen 3069 | . 2 ⊢ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)0 ≤ 𝑦 |
6 | breq1 5169 | . . . 4 ⊢ (𝑥 = 0 → (𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦)) | |
7 | 6 | ralbidv 3184 | . . 3 ⊢ (𝑥 = 0 → (∀𝑦 ∈ (ℝ+ ∩ 𝐴)𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)0 ≤ 𝑦)) |
8 | 7 | rspcev 3635 | . 2 ⊢ ((0 ∈ ℝ ∧ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)𝑥 ≤ 𝑦) |
9 | 1, 5, 8 | mp2an 691 | 1 ⊢ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)𝑥 ≤ 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ∩ cin 3975 class class class wbr 5166 ℝcr 11183 0cc0 11184 ≤ cle 11325 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 ax-pre-lttri 11258 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-rp 13058 |
This theorem is referenced by: taupilem2 37288 taupi 37289 |
Copyright terms: Public domain | W3C validator |