![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > taupilemrplb | Structured version Visualization version GIF version |
Description: A set of positive reals has (in the reals) a lower bound. (Contributed by Jim Kingdon, 19-Feb-2019.) |
Ref | Expression |
---|---|
taupilemrplb | ⊢ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)𝑥 ≤ 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11213 | . 2 ⊢ 0 ∈ ℝ | |
2 | inss1 4220 | . . . . 5 ⊢ (ℝ+ ∩ 𝐴) ⊆ ℝ+ | |
3 | 2 | sseli 3970 | . . . 4 ⊢ (𝑦 ∈ (ℝ+ ∩ 𝐴) → 𝑦 ∈ ℝ+) |
4 | 3 | rpge0d 13017 | . . 3 ⊢ (𝑦 ∈ (ℝ+ ∩ 𝐴) → 0 ≤ 𝑦) |
5 | 4 | rgen 3055 | . 2 ⊢ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)0 ≤ 𝑦 |
6 | breq1 5141 | . . . 4 ⊢ (𝑥 = 0 → (𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦)) | |
7 | 6 | ralbidv 3169 | . . 3 ⊢ (𝑥 = 0 → (∀𝑦 ∈ (ℝ+ ∩ 𝐴)𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)0 ≤ 𝑦)) |
8 | 7 | rspcev 3604 | . 2 ⊢ ((0 ∈ ℝ ∧ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)𝑥 ≤ 𝑦) |
9 | 1, 5, 8 | mp2an 689 | 1 ⊢ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)𝑥 ≤ 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∃wrex 3062 ∩ cin 3939 class class class wbr 5138 ℝcr 11105 0cc0 11106 ≤ cle 11246 ℝ+crp 12971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-resscn 11163 ax-1cn 11164 ax-addrcl 11167 ax-rnegex 11177 ax-cnre 11179 ax-pre-lttri 11180 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-rp 12972 |
This theorem is referenced by: taupilem2 36693 taupi 36694 |
Copyright terms: Public domain | W3C validator |