Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  taupilemrplb Structured version   Visualization version   GIF version

Theorem taupilemrplb 33762
Description: A set of positive reals has (in the reals) a lower bound. (Contributed by Jim Kingdon, 19-Feb-2019.)
Assertion
Ref Expression
taupilemrplb 𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+𝐴)𝑥𝑦
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem taupilemrplb
StepHypRef Expression
1 0re 10378 . 2 0 ∈ ℝ
2 inss1 4052 . . . . 5 (ℝ+𝐴) ⊆ ℝ+
32sseli 3816 . . . 4 (𝑦 ∈ (ℝ+𝐴) → 𝑦 ∈ ℝ+)
43rpge0d 12185 . . 3 (𝑦 ∈ (ℝ+𝐴) → 0 ≤ 𝑦)
54rgen 3103 . 2 𝑦 ∈ (ℝ+𝐴)0 ≤ 𝑦
6 breq1 4889 . . . 4 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
76ralbidv 3167 . . 3 (𝑥 = 0 → (∀𝑦 ∈ (ℝ+𝐴)𝑥𝑦 ↔ ∀𝑦 ∈ (ℝ+𝐴)0 ≤ 𝑦))
87rspcev 3510 . 2 ((0 ∈ ℝ ∧ ∀𝑦 ∈ (ℝ+𝐴)0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+𝐴)𝑥𝑦)
91, 5, 8mp2an 682 1 𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+𝐴)𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:   = wceq 1601  wcel 2106  wral 3089  wrex 3090  cin 3790   class class class wbr 4886  cr 10271  0cc0 10272  cle 10412  +crp 12137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-resscn 10329  ax-1cn 10330  ax-addrcl 10333  ax-rnegex 10343  ax-cnre 10345  ax-pre-lttri 10346
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-rp 12138
This theorem is referenced by:  taupilem2  33764  taupi  33765
  Copyright terms: Public domain W3C validator