Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > taupilem1 | Structured version Visualization version GIF version |
Description: Lemma for taupi 35018. A positive real whose cosine is one is at least 2 · π. (Contributed by Jim Kingdon, 19-Feb-2019.) |
Ref | Expression |
---|---|
taupilem1 | ⊢ ((𝐴 ∈ ℝ+ ∧ (cos‘𝐴) = 1) → (2 · π) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rp 12436 | . . . . . . 7 ⊢ 2 ∈ ℝ+ | |
2 | pirp 25154 | . . . . . . 7 ⊢ π ∈ ℝ+ | |
3 | rpmulcl 12454 | . . . . . . 7 ⊢ ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+) | |
4 | 1, 2, 3 | mp2an 692 | . . . . . 6 ⊢ (2 · π) ∈ ℝ+ |
5 | rpre 12439 | . . . . . 6 ⊢ ((2 · π) ∈ ℝ+ → (2 · π) ∈ ℝ) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ (2 · π) ∈ ℝ |
7 | 6 | recni 10694 | . . . 4 ⊢ (2 · π) ∈ ℂ |
8 | rpgt0 12443 | . . . . . 6 ⊢ ((2 · π) ∈ ℝ+ → 0 < (2 · π)) | |
9 | 4, 8 | ax-mp 5 | . . . . 5 ⊢ 0 < (2 · π) |
10 | 6, 9 | gt0ne0ii 11215 | . . . 4 ⊢ (2 · π) ≠ 0 |
11 | 7, 10 | dividi 11412 | . . 3 ⊢ ((2 · π) / (2 · π)) = 1 |
12 | rpdivcl 12456 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ+ ∧ (2 · π) ∈ ℝ+) → (𝐴 / (2 · π)) ∈ ℝ+) | |
13 | 12 | rpgt0d 12476 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ (2 · π) ∈ ℝ+) → 0 < (𝐴 / (2 · π))) |
14 | 4, 13 | mpan2 691 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 0 < (𝐴 / (2 · π))) |
15 | 14 | adantr 485 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ (cos‘𝐴) = 1) → 0 < (𝐴 / (2 · π))) |
16 | rpcn 12441 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
17 | coseq1 25217 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ)) | |
18 | 16, 17 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ)) |
19 | 18 | biimpa 481 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ (cos‘𝐴) = 1) → (𝐴 / (2 · π)) ∈ ℤ) |
20 | zgt0ge1 12076 | . . . . 5 ⊢ ((𝐴 / (2 · π)) ∈ ℤ → (0 < (𝐴 / (2 · π)) ↔ 1 ≤ (𝐴 / (2 · π)))) | |
21 | 19, 20 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ (cos‘𝐴) = 1) → (0 < (𝐴 / (2 · π)) ↔ 1 ≤ (𝐴 / (2 · π)))) |
22 | 15, 21 | mpbid 235 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ (cos‘𝐴) = 1) → 1 ≤ (𝐴 / (2 · π))) |
23 | 11, 22 | eqbrtrid 5068 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ (cos‘𝐴) = 1) → ((2 · π) / (2 · π)) ≤ (𝐴 / (2 · π))) |
24 | rpre 12439 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
25 | 24 | adantr 485 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ (cos‘𝐴) = 1) → 𝐴 ∈ ℝ) |
26 | 6, 9 | pm3.2i 475 | . . . 4 ⊢ ((2 · π) ∈ ℝ ∧ 0 < (2 · π)) |
27 | lediv1 11544 | . . . 4 ⊢ (((2 · π) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((2 · π) ∈ ℝ ∧ 0 < (2 · π))) → ((2 · π) ≤ 𝐴 ↔ ((2 · π) / (2 · π)) ≤ (𝐴 / (2 · π)))) | |
28 | 6, 26, 27 | mp3an13 1450 | . . 3 ⊢ (𝐴 ∈ ℝ → ((2 · π) ≤ 𝐴 ↔ ((2 · π) / (2 · π)) ≤ (𝐴 / (2 · π)))) |
29 | 25, 28 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ (cos‘𝐴) = 1) → ((2 · π) ≤ 𝐴 ↔ ((2 · π) / (2 · π)) ≤ (𝐴 / (2 · π)))) |
30 | 23, 29 | mpbird 260 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ (cos‘𝐴) = 1) → (2 · π) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 class class class wbr 5033 ‘cfv 6336 (class class class)co 7151 ℂcc 10574 ℝcr 10575 0cc0 10576 1c1 10577 · cmul 10581 < clt 10714 ≤ cle 10715 / cdiv 11336 2c2 11730 ℤcz 12021 ℝ+crp 12431 cosccos 15467 πcpi 15469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-inf2 9138 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 ax-pre-sup 10654 ax-addf 10655 ax-mulf 10656 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-se 5485 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-isom 6345 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-of 7406 df-om 7581 df-1st 7694 df-2nd 7695 df-supp 7837 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-2o 8114 df-er 8300 df-map 8419 df-pm 8420 df-ixp 8481 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-fsupp 8868 df-fi 8909 df-sup 8940 df-inf 8941 df-oi 9008 df-card 9402 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-div 11337 df-nn 11676 df-2 11738 df-3 11739 df-4 11740 df-5 11741 df-6 11742 df-7 11743 df-8 11744 df-9 11745 df-n0 11936 df-z 12022 df-dec 12139 df-uz 12284 df-q 12390 df-rp 12432 df-xneg 12549 df-xadd 12550 df-xmul 12551 df-ioo 12784 df-ioc 12785 df-ico 12786 df-icc 12787 df-fz 12941 df-fzo 13084 df-fl 13212 df-mod 13288 df-seq 13420 df-exp 13481 df-fac 13685 df-bc 13714 df-hash 13742 df-shft 14475 df-cj 14507 df-re 14508 df-im 14509 df-sqrt 14643 df-abs 14644 df-limsup 14877 df-clim 14894 df-rlim 14895 df-sum 15092 df-ef 15470 df-sin 15472 df-cos 15473 df-pi 15475 df-struct 16544 df-ndx 16545 df-slot 16546 df-base 16548 df-sets 16549 df-ress 16550 df-plusg 16637 df-mulr 16638 df-starv 16639 df-sca 16640 df-vsca 16641 df-ip 16642 df-tset 16643 df-ple 16644 df-ds 16646 df-unif 16647 df-hom 16648 df-cco 16649 df-rest 16755 df-topn 16756 df-0g 16774 df-gsum 16775 df-topgen 16776 df-pt 16777 df-prds 16780 df-xrs 16834 df-qtop 16839 df-imas 16840 df-xps 16842 df-mre 16916 df-mrc 16917 df-acs 16919 df-mgm 17919 df-sgrp 17968 df-mnd 17979 df-submnd 18024 df-mulg 18293 df-cntz 18515 df-cmn 18976 df-psmet 20159 df-xmet 20160 df-met 20161 df-bl 20162 df-mopn 20163 df-fbas 20164 df-fg 20165 df-cnfld 20168 df-top 21595 df-topon 21612 df-topsp 21634 df-bases 21647 df-cld 21720 df-ntr 21721 df-cls 21722 df-nei 21799 df-lp 21837 df-perf 21838 df-cn 21928 df-cnp 21929 df-haus 22016 df-tx 22263 df-hmeo 22456 df-fil 22547 df-fm 22639 df-flim 22640 df-flf 22641 df-xms 23023 df-ms 23024 df-tms 23025 df-cncf 23580 df-limc 24566 df-dv 24567 |
This theorem is referenced by: taupi 35018 |
Copyright terms: Public domain | W3C validator |