Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  taupi Structured version   Visualization version   GIF version

Theorem taupi 36008
Description: Relationship between τ and π. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.)
Assertion
Ref Expression
taupi τ = (2 · π)

Proof of Theorem taupi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taupilem2 36007 . 2 τ ≤ (2 · π)
2 inss1 4224 . . . . . . 7 (ℝ+ ∩ (cos “ {1})) ⊆ ℝ+
3 rpssre 12963 . . . . . . 7 + ⊆ ℝ
42, 3sstri 3987 . . . . . 6 (ℝ+ ∩ (cos “ {1})) ⊆ ℝ
5 2rp 12961 . . . . . . . . 9 2 ∈ ℝ+
6 pirp 25900 . . . . . . . . 9 π ∈ ℝ+
7 rpmulcl 12979 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
85, 6, 7mp2an 690 . . . . . . . 8 (2 · π) ∈ ℝ+
9 cos2pi 25915 . . . . . . . 8 (cos‘(2 · π)) = 1
10 taupilem3 36004 . . . . . . . 8 ((2 · π) ∈ (ℝ+ ∩ (cos “ {1})) ↔ ((2 · π) ∈ ℝ+ ∧ (cos‘(2 · π)) = 1))
118, 9, 10mpbir2an 709 . . . . . . 7 (2 · π) ∈ (ℝ+ ∩ (cos “ {1}))
1211ne0ii 4333 . . . . . 6 (ℝ+ ∩ (cos “ {1})) ≠ ∅
13 taupilemrplb 36005 . . . . . 6 𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (cos “ {1}))𝑥𝑦
144, 12, 133pm3.2i 1339 . . . . 5 ((ℝ+ ∩ (cos “ {1})) ⊆ ℝ ∧ (ℝ+ ∩ (cos “ {1})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (cos “ {1}))𝑥𝑦)
15 2re 12268 . . . . . 6 2 ∈ ℝ
16 pire 25897 . . . . . 6 π ∈ ℝ
1715, 16remulcli 11212 . . . . 5 (2 · π) ∈ ℝ
18 infregelb 12180 . . . . 5 ((((ℝ+ ∩ (cos “ {1})) ⊆ ℝ ∧ (ℝ+ ∩ (cos “ {1})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (cos “ {1}))𝑥𝑦) ∧ (2 · π) ∈ ℝ) → ((2 · π) ≤ inf((ℝ+ ∩ (cos “ {1})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (cos “ {1}))(2 · π) ≤ 𝑥))
1914, 17, 18mp2an 690 . . . 4 ((2 · π) ≤ inf((ℝ+ ∩ (cos “ {1})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (cos “ {1}))(2 · π) ≤ 𝑥)
20 taupilem3 36004 . . . . 5 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ↔ (𝑥 ∈ ℝ+ ∧ (cos‘𝑥) = 1))
21 taupilem1 36006 . . . . 5 ((𝑥 ∈ ℝ+ ∧ (cos‘𝑥) = 1) → (2 · π) ≤ 𝑥)
2220, 21sylbi 216 . . . 4 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → (2 · π) ≤ 𝑥)
2319, 22mprgbir 3067 . . 3 (2 · π) ≤ inf((ℝ+ ∩ (cos “ {1})), ℝ, < )
24 df-tau 16128 . . 3 τ = inf((ℝ+ ∩ (cos “ {1})), ℝ, < )
2523, 24breqtrri 5168 . 2 (2 · π) ≤ τ
26 infrecl 12178 . . . . 5 (((ℝ+ ∩ (cos “ {1})) ⊆ ℝ ∧ (ℝ+ ∩ (cos “ {1})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (cos “ {1}))𝑥𝑦) → inf((ℝ+ ∩ (cos “ {1})), ℝ, < ) ∈ ℝ)
2714, 26ax-mp 5 . . . 4 inf((ℝ+ ∩ (cos “ {1})), ℝ, < ) ∈ ℝ
2824, 27eqeltri 2828 . . 3 τ ∈ ℝ
2928, 17letri3i 11312 . 2 (τ = (2 · π) ↔ (τ ≤ (2 · π) ∧ (2 · π) ≤ τ))
301, 25, 29mpbir2an 709 1 τ = (2 · π)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wral 3060  wrex 3069  cin 3943  wss 3944  c0 4318  {csn 4622   class class class wbr 5141  ccnv 5668  cima 5672  cfv 6532  (class class class)co 7393  infcinf 9418  cr 11091  1c1 11093   · cmul 11097   < clt 11230  cle 11231  2c2 12249  +crp 12956  cosccos 15990  πcpi 15992  τctau 16127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-inf2 9618  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170  ax-addf 11171  ax-mulf 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-2o 8449  df-er 8686  df-map 8805  df-pm 8806  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9345  df-fi 9388  df-sup 9419  df-inf 9420  df-oi 9487  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-q 12915  df-rp 12957  df-xneg 13074  df-xadd 13075  df-xmul 13076  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13467  df-fzo 13610  df-fl 13739  df-mod 13817  df-seq 13949  df-exp 14010  df-fac 14216  df-bc 14245  df-hash 14273  df-shft 14996  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-limsup 15397  df-clim 15414  df-rlim 15415  df-sum 15615  df-ef 15993  df-sin 15995  df-cos 15996  df-pi 15998  df-tau 16128  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17350  df-topn 17351  df-0g 17369  df-gsum 17370  df-topgen 17371  df-pt 17372  df-prds 17375  df-xrs 17430  df-qtop 17435  df-imas 17436  df-xps 17438  df-mre 17512  df-mrc 17513  df-acs 17515  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-submnd 18648  df-mulg 18923  df-cntz 19147  df-cmn 19614  df-psmet 20870  df-xmet 20871  df-met 20872  df-bl 20873  df-mopn 20874  df-fbas 20875  df-fg 20876  df-cnfld 20879  df-top 22325  df-topon 22342  df-topsp 22364  df-bases 22378  df-cld 22452  df-ntr 22453  df-cls 22454  df-nei 22531  df-lp 22569  df-perf 22570  df-cn 22660  df-cnp 22661  df-haus 22748  df-tx 22995  df-hmeo 23188  df-fil 23279  df-fm 23371  df-flim 23372  df-flf 23373  df-xms 23755  df-ms 23756  df-tms 23757  df-cncf 24323  df-limc 25312  df-dv 25313
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator