| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > taupi | Structured version Visualization version GIF version | ||
| Description: Relationship between τ and π. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.) |
| Ref | Expression |
|---|---|
| taupi | ⊢ τ = (2 · π) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | taupilem2 37389 | . 2 ⊢ τ ≤ (2 · π) | |
| 2 | inss1 4186 | . . . . . . 7 ⊢ (ℝ+ ∩ (◡cos “ {1})) ⊆ ℝ+ | |
| 3 | rpssre 12902 | . . . . . . 7 ⊢ ℝ+ ⊆ ℝ | |
| 4 | 2, 3 | sstri 3940 | . . . . . 6 ⊢ (ℝ+ ∩ (◡cos “ {1})) ⊆ ℝ |
| 5 | 2rp 12899 | . . . . . . . . 9 ⊢ 2 ∈ ℝ+ | |
| 6 | pirp 26400 | . . . . . . . . 9 ⊢ π ∈ ℝ+ | |
| 7 | rpmulcl 12919 | . . . . . . . . 9 ⊢ ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+) | |
| 8 | 5, 6, 7 | mp2an 692 | . . . . . . . 8 ⊢ (2 · π) ∈ ℝ+ |
| 9 | cos2pi 26415 | . . . . . . . 8 ⊢ (cos‘(2 · π)) = 1 | |
| 10 | taupilem3 37386 | . . . . . . . 8 ⊢ ((2 · π) ∈ (ℝ+ ∩ (◡cos “ {1})) ↔ ((2 · π) ∈ ℝ+ ∧ (cos‘(2 · π)) = 1)) | |
| 11 | 8, 9, 10 | mpbir2an 711 | . . . . . . 7 ⊢ (2 · π) ∈ (ℝ+ ∩ (◡cos “ {1})) |
| 12 | 11 | ne0ii 4293 | . . . . . 6 ⊢ (ℝ+ ∩ (◡cos “ {1})) ≠ ∅ |
| 13 | taupilemrplb 37387 | . . . . . 6 ⊢ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (◡cos “ {1}))𝑥 ≤ 𝑦 | |
| 14 | 4, 12, 13 | 3pm3.2i 1340 | . . . . 5 ⊢ ((ℝ+ ∩ (◡cos “ {1})) ⊆ ℝ ∧ (ℝ+ ∩ (◡cos “ {1})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (◡cos “ {1}))𝑥 ≤ 𝑦) |
| 15 | 2re 12208 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 16 | pire 26396 | . . . . . 6 ⊢ π ∈ ℝ | |
| 17 | 15, 16 | remulcli 11137 | . . . . 5 ⊢ (2 · π) ∈ ℝ |
| 18 | infregelb 12115 | . . . . 5 ⊢ ((((ℝ+ ∩ (◡cos “ {1})) ⊆ ℝ ∧ (ℝ+ ∩ (◡cos “ {1})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (◡cos “ {1}))𝑥 ≤ 𝑦) ∧ (2 · π) ∈ ℝ) → ((2 · π) ≤ inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (◡cos “ {1}))(2 · π) ≤ 𝑥)) | |
| 19 | 14, 17, 18 | mp2an 692 | . . . 4 ⊢ ((2 · π) ≤ inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (◡cos “ {1}))(2 · π) ≤ 𝑥) |
| 20 | taupilem3 37386 | . . . . 5 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ↔ (𝑥 ∈ ℝ+ ∧ (cos‘𝑥) = 1)) | |
| 21 | taupilem1 37388 | . . . . 5 ⊢ ((𝑥 ∈ ℝ+ ∧ (cos‘𝑥) = 1) → (2 · π) ≤ 𝑥) | |
| 22 | 20, 21 | sylbi 217 | . . . 4 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → (2 · π) ≤ 𝑥) |
| 23 | 19, 22 | mprgbir 3055 | . . 3 ⊢ (2 · π) ≤ inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) |
| 24 | df-tau 16116 | . . 3 ⊢ τ = inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) | |
| 25 | 23, 24 | breqtrri 5122 | . 2 ⊢ (2 · π) ≤ τ |
| 26 | infrecl 12113 | . . . . 5 ⊢ (((ℝ+ ∩ (◡cos “ {1})) ⊆ ℝ ∧ (ℝ+ ∩ (◡cos “ {1})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (◡cos “ {1}))𝑥 ≤ 𝑦) → inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) ∈ ℝ) | |
| 27 | 14, 26 | ax-mp 5 | . . . 4 ⊢ inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) ∈ ℝ |
| 28 | 24, 27 | eqeltri 2829 | . . 3 ⊢ τ ∈ ℝ |
| 29 | 28, 17 | letri3i 11238 | . 2 ⊢ (τ = (2 · π) ↔ (τ ≤ (2 · π) ∧ (2 · π) ≤ τ)) |
| 30 | 1, 25, 29 | mpbir2an 711 | 1 ⊢ τ = (2 · π) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 {csn 4577 class class class wbr 5095 ◡ccnv 5620 “ cima 5624 ‘cfv 6488 (class class class)co 7354 infcinf 9334 ℝcr 11014 1c1 11016 · cmul 11020 < clt 11155 ≤ cle 11156 2c2 12189 ℝ+crp 12894 cosccos 15975 πcpi 15977 τctau 16115 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 ax-addf 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-pm 8761 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-fi 9304 df-sup 9335 df-inf 9336 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-q 12851 df-rp 12895 df-xneg 13015 df-xadd 13016 df-xmul 13017 df-ioo 13253 df-ioc 13254 df-ico 13255 df-icc 13256 df-fz 13412 df-fzo 13559 df-fl 13700 df-mod 13778 df-seq 13913 df-exp 13973 df-fac 14185 df-bc 14214 df-hash 14242 df-shft 14978 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-limsup 15382 df-clim 15399 df-rlim 15400 df-sum 15598 df-ef 15978 df-sin 15980 df-cos 15981 df-pi 15983 df-tau 16116 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-starv 17180 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-unif 17188 df-hom 17189 df-cco 17190 df-rest 17330 df-topn 17331 df-0g 17349 df-gsum 17350 df-topgen 17351 df-pt 17352 df-prds 17355 df-xrs 17410 df-qtop 17415 df-imas 17416 df-xps 17418 df-mre 17492 df-mrc 17493 df-acs 17495 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-submnd 18696 df-mulg 18985 df-cntz 19233 df-cmn 19698 df-psmet 21287 df-xmet 21288 df-met 21289 df-bl 21290 df-mopn 21291 df-fbas 21292 df-fg 21293 df-cnfld 21296 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22864 df-cld 22937 df-ntr 22938 df-cls 22939 df-nei 23016 df-lp 23054 df-perf 23055 df-cn 23145 df-cnp 23146 df-haus 23233 df-tx 23480 df-hmeo 23673 df-fil 23764 df-fm 23856 df-flim 23857 df-flf 23858 df-xms 24238 df-ms 24239 df-tms 24240 df-cncf 24801 df-limc 25797 df-dv 25798 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |