Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  taupi Structured version   Visualization version   GIF version

Theorem taupi 37305
Description: Relationship between τ and π. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.)
Assertion
Ref Expression
taupi τ = (2 · π)

Proof of Theorem taupi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taupilem2 37304 . 2 τ ≤ (2 · π)
2 inss1 4244 . . . . . . 7 (ℝ+ ∩ (cos “ {1})) ⊆ ℝ+
3 rpssre 13039 . . . . . . 7 + ⊆ ℝ
42, 3sstri 4004 . . . . . 6 (ℝ+ ∩ (cos “ {1})) ⊆ ℝ
5 2rp 13036 . . . . . . . . 9 2 ∈ ℝ+
6 pirp 26517 . . . . . . . . 9 π ∈ ℝ+
7 rpmulcl 13055 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
85, 6, 7mp2an 692 . . . . . . . 8 (2 · π) ∈ ℝ+
9 cos2pi 26532 . . . . . . . 8 (cos‘(2 · π)) = 1
10 taupilem3 37301 . . . . . . . 8 ((2 · π) ∈ (ℝ+ ∩ (cos “ {1})) ↔ ((2 · π) ∈ ℝ+ ∧ (cos‘(2 · π)) = 1))
118, 9, 10mpbir2an 711 . . . . . . 7 (2 · π) ∈ (ℝ+ ∩ (cos “ {1}))
1211ne0ii 4349 . . . . . 6 (ℝ+ ∩ (cos “ {1})) ≠ ∅
13 taupilemrplb 37302 . . . . . 6 𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (cos “ {1}))𝑥𝑦
144, 12, 133pm3.2i 1338 . . . . 5 ((ℝ+ ∩ (cos “ {1})) ⊆ ℝ ∧ (ℝ+ ∩ (cos “ {1})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (cos “ {1}))𝑥𝑦)
15 2re 12337 . . . . . 6 2 ∈ ℝ
16 pire 26514 . . . . . 6 π ∈ ℝ
1715, 16remulcli 11274 . . . . 5 (2 · π) ∈ ℝ
18 infregelb 12249 . . . . 5 ((((ℝ+ ∩ (cos “ {1})) ⊆ ℝ ∧ (ℝ+ ∩ (cos “ {1})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (cos “ {1}))𝑥𝑦) ∧ (2 · π) ∈ ℝ) → ((2 · π) ≤ inf((ℝ+ ∩ (cos “ {1})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (cos “ {1}))(2 · π) ≤ 𝑥))
1914, 17, 18mp2an 692 . . . 4 ((2 · π) ≤ inf((ℝ+ ∩ (cos “ {1})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (cos “ {1}))(2 · π) ≤ 𝑥)
20 taupilem3 37301 . . . . 5 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ↔ (𝑥 ∈ ℝ+ ∧ (cos‘𝑥) = 1))
21 taupilem1 37303 . . . . 5 ((𝑥 ∈ ℝ+ ∧ (cos‘𝑥) = 1) → (2 · π) ≤ 𝑥)
2220, 21sylbi 217 . . . 4 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → (2 · π) ≤ 𝑥)
2319, 22mprgbir 3065 . . 3 (2 · π) ≤ inf((ℝ+ ∩ (cos “ {1})), ℝ, < )
24 df-tau 16235 . . 3 τ = inf((ℝ+ ∩ (cos “ {1})), ℝ, < )
2523, 24breqtrri 5174 . 2 (2 · π) ≤ τ
26 infrecl 12247 . . . . 5 (((ℝ+ ∩ (cos “ {1})) ⊆ ℝ ∧ (ℝ+ ∩ (cos “ {1})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (cos “ {1}))𝑥𝑦) → inf((ℝ+ ∩ (cos “ {1})), ℝ, < ) ∈ ℝ)
2714, 26ax-mp 5 . . . 4 inf((ℝ+ ∩ (cos “ {1})), ℝ, < ) ∈ ℝ
2824, 27eqeltri 2834 . . 3 τ ∈ ℝ
2928, 17letri3i 11374 . 2 (τ = (2 · π) ↔ (τ ≤ (2 · π) ∧ (2 · π) ≤ τ))
301, 25, 29mpbir2an 711 1 τ = (2 · π)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  cin 3961  wss 3962  c0 4338  {csn 4630   class class class wbr 5147  ccnv 5687  cima 5691  cfv 6562  (class class class)co 7430  infcinf 9478  cr 11151  1c1 11153   · cmul 11157   < clt 11292  cle 11293  2c2 12318  +crp 13031  cosccos 16096  πcpi 16098  τctau 16234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-tau 16235  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator