| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > taupi | Structured version Visualization version GIF version | ||
| Description: Relationship between τ and π. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.) |
| Ref | Expression |
|---|---|
| taupi | ⊢ τ = (2 · π) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | taupilem2 37310 | . 2 ⊢ τ ≤ (2 · π) | |
| 2 | inss1 4200 | . . . . . . 7 ⊢ (ℝ+ ∩ (◡cos “ {1})) ⊆ ℝ+ | |
| 3 | rpssre 12959 | . . . . . . 7 ⊢ ℝ+ ⊆ ℝ | |
| 4 | 2, 3 | sstri 3956 | . . . . . 6 ⊢ (ℝ+ ∩ (◡cos “ {1})) ⊆ ℝ |
| 5 | 2rp 12956 | . . . . . . . . 9 ⊢ 2 ∈ ℝ+ | |
| 6 | pirp 26370 | . . . . . . . . 9 ⊢ π ∈ ℝ+ | |
| 7 | rpmulcl 12976 | . . . . . . . . 9 ⊢ ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+) | |
| 8 | 5, 6, 7 | mp2an 692 | . . . . . . . 8 ⊢ (2 · π) ∈ ℝ+ |
| 9 | cos2pi 26385 | . . . . . . . 8 ⊢ (cos‘(2 · π)) = 1 | |
| 10 | taupilem3 37307 | . . . . . . . 8 ⊢ ((2 · π) ∈ (ℝ+ ∩ (◡cos “ {1})) ↔ ((2 · π) ∈ ℝ+ ∧ (cos‘(2 · π)) = 1)) | |
| 11 | 8, 9, 10 | mpbir2an 711 | . . . . . . 7 ⊢ (2 · π) ∈ (ℝ+ ∩ (◡cos “ {1})) |
| 12 | 11 | ne0ii 4307 | . . . . . 6 ⊢ (ℝ+ ∩ (◡cos “ {1})) ≠ ∅ |
| 13 | taupilemrplb 37308 | . . . . . 6 ⊢ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (◡cos “ {1}))𝑥 ≤ 𝑦 | |
| 14 | 4, 12, 13 | 3pm3.2i 1340 | . . . . 5 ⊢ ((ℝ+ ∩ (◡cos “ {1})) ⊆ ℝ ∧ (ℝ+ ∩ (◡cos “ {1})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (◡cos “ {1}))𝑥 ≤ 𝑦) |
| 15 | 2re 12260 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 16 | pire 26366 | . . . . . 6 ⊢ π ∈ ℝ | |
| 17 | 15, 16 | remulcli 11190 | . . . . 5 ⊢ (2 · π) ∈ ℝ |
| 18 | infregelb 12167 | . . . . 5 ⊢ ((((ℝ+ ∩ (◡cos “ {1})) ⊆ ℝ ∧ (ℝ+ ∩ (◡cos “ {1})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (◡cos “ {1}))𝑥 ≤ 𝑦) ∧ (2 · π) ∈ ℝ) → ((2 · π) ≤ inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (◡cos “ {1}))(2 · π) ≤ 𝑥)) | |
| 19 | 14, 17, 18 | mp2an 692 | . . . 4 ⊢ ((2 · π) ≤ inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) ↔ ∀𝑥 ∈ (ℝ+ ∩ (◡cos “ {1}))(2 · π) ≤ 𝑥) |
| 20 | taupilem3 37307 | . . . . 5 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ↔ (𝑥 ∈ ℝ+ ∧ (cos‘𝑥) = 1)) | |
| 21 | taupilem1 37309 | . . . . 5 ⊢ ((𝑥 ∈ ℝ+ ∧ (cos‘𝑥) = 1) → (2 · π) ≤ 𝑥) | |
| 22 | 20, 21 | sylbi 217 | . . . 4 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → (2 · π) ≤ 𝑥) |
| 23 | 19, 22 | mprgbir 3051 | . . 3 ⊢ (2 · π) ≤ inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) |
| 24 | df-tau 16171 | . . 3 ⊢ τ = inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) | |
| 25 | 23, 24 | breqtrri 5134 | . 2 ⊢ (2 · π) ≤ τ |
| 26 | infrecl 12165 | . . . . 5 ⊢ (((ℝ+ ∩ (◡cos “ {1})) ⊆ ℝ ∧ (ℝ+ ∩ (◡cos “ {1})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ (◡cos “ {1}))𝑥 ≤ 𝑦) → inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) ∈ ℝ) | |
| 27 | 14, 26 | ax-mp 5 | . . . 4 ⊢ inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) ∈ ℝ |
| 28 | 24, 27 | eqeltri 2824 | . . 3 ⊢ τ ∈ ℝ |
| 29 | 28, 17 | letri3i 11290 | . 2 ⊢ (τ = (2 · π) ↔ (τ ≤ (2 · π) ∧ (2 · π) ≤ τ)) |
| 30 | 1, 25, 29 | mpbir2an 711 | 1 ⊢ τ = (2 · π) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 {csn 4589 class class class wbr 5107 ◡ccnv 5637 “ cima 5641 ‘cfv 6511 (class class class)co 7387 infcinf 9392 ℝcr 11067 1c1 11069 · cmul 11073 < clt 11208 ≤ cle 11209 2c2 12241 ℝ+crp 12951 cosccos 16030 πcpi 16032 τctau 16170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-ef 16033 df-sin 16035 df-cos 16036 df-pi 16038 df-tau 16171 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-haus 23202 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cncf 24771 df-limc 25767 df-dv 25768 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |