Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcnpi Structured version   Visualization version   GIF version

Theorem txcnpi 22217
 Description: Continuity of a two-argument function at a point. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
txcnpi.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
txcnpi.2 (𝜑𝐾 ∈ (TopOn‘𝑌))
txcnpi.3 (𝜑𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩))
txcnpi.4 (𝜑𝑈𝐿)
txcnpi.5 (𝜑𝐴𝑋)
txcnpi.6 (𝜑𝐵𝑌)
txcnpi.7 (𝜑 → (𝐴𝐹𝐵) ∈ 𝑈)
Assertion
Ref Expression
txcnpi (𝜑 → ∃𝑢𝐽𝑣𝐾 (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈)))
Distinct variable groups:   𝑣,𝑢,𝐴   𝑢,𝐵,𝑣   𝑢,𝐹,𝑣   𝑢,𝐽,𝑣   𝑢,𝐾,𝑣   𝑢,𝑈,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝐿(𝑣,𝑢)   𝑋(𝑣,𝑢)   𝑌(𝑣,𝑢)

Proof of Theorem txcnpi
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcnpi.3 . . 3 (𝜑𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩))
2 txcnpi.4 . . 3 (𝜑𝑈𝐿)
3 df-ov 7142 . . . 4 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
4 txcnpi.7 . . . 4 (𝜑 → (𝐴𝐹𝐵) ∈ 𝑈)
53, 4eqeltrrid 2898 . . 3 (𝜑 → (𝐹‘⟨𝐴, 𝐵⟩) ∈ 𝑈)
6 cnpimaex 21865 . . 3 ((𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ∧ 𝑈𝐿 ∧ (𝐹‘⟨𝐴, 𝐵⟩) ∈ 𝑈) → ∃𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝐴, 𝐵⟩ ∈ 𝑤 ∧ (𝐹𝑤) ⊆ 𝑈))
71, 2, 5, 6syl3anc 1368 . 2 (𝜑 → ∃𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝐴, 𝐵⟩ ∈ 𝑤 ∧ (𝐹𝑤) ⊆ 𝑈))
8 eqid 2801 . . . . . . . . . 10 (𝐽 ×t 𝐾) = (𝐽 ×t 𝐾)
9 eqid 2801 . . . . . . . . . 10 𝐿 = 𝐿
108, 9cnpf 21856 . . . . . . . . 9 (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) → 𝐹: (𝐽 ×t 𝐾)⟶ 𝐿)
111, 10syl 17 . . . . . . . 8 (𝜑𝐹: (𝐽 ×t 𝐾)⟶ 𝐿)
1211adantr 484 . . . . . . 7 ((𝜑𝑤 ∈ (𝐽 ×t 𝐾)) → 𝐹: (𝐽 ×t 𝐾)⟶ 𝐿)
1312ffund 6495 . . . . . 6 ((𝜑𝑤 ∈ (𝐽 ×t 𝐾)) → Fun 𝐹)
14 elssuni 4833 . . . . . . 7 (𝑤 ∈ (𝐽 ×t 𝐾) → 𝑤 (𝐽 ×t 𝐾))
1511fdmd 6501 . . . . . . . . 9 (𝜑 → dom 𝐹 = (𝐽 ×t 𝐾))
1615sseq2d 3950 . . . . . . . 8 (𝜑 → (𝑤 ⊆ dom 𝐹𝑤 (𝐽 ×t 𝐾)))
1716biimpar 481 . . . . . . 7 ((𝜑𝑤 (𝐽 ×t 𝐾)) → 𝑤 ⊆ dom 𝐹)
1814, 17sylan2 595 . . . . . 6 ((𝜑𝑤 ∈ (𝐽 ×t 𝐾)) → 𝑤 ⊆ dom 𝐹)
19 funimass3 6805 . . . . . 6 ((Fun 𝐹𝑤 ⊆ dom 𝐹) → ((𝐹𝑤) ⊆ 𝑈𝑤 ⊆ (𝐹𝑈)))
2013, 18, 19syl2anc 587 . . . . 5 ((𝜑𝑤 ∈ (𝐽 ×t 𝐾)) → ((𝐹𝑤) ⊆ 𝑈𝑤 ⊆ (𝐹𝑈)))
2120anbi2d 631 . . . 4 ((𝜑𝑤 ∈ (𝐽 ×t 𝐾)) → ((⟨𝐴, 𝐵⟩ ∈ 𝑤 ∧ (𝐹𝑤) ⊆ 𝑈) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑤𝑤 ⊆ (𝐹𝑈))))
22 txcnpi.1 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑋))
23 txcnpi.2 . . . . . . 7 (𝜑𝐾 ∈ (TopOn‘𝑌))
24 eltx 22177 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑤 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑧𝑤𝑢𝐽𝑣𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)))
2522, 23, 24syl2anc 587 . . . . . 6 (𝜑 → (𝑤 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑧𝑤𝑢𝐽𝑣𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)))
2625biimpa 480 . . . . 5 ((𝜑𝑤 ∈ (𝐽 ×t 𝐾)) → ∀𝑧𝑤𝑢𝐽𝑣𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤))
27 eleq1 2880 . . . . . . . . . 10 (𝑧 = ⟨𝐴, 𝐵⟩ → (𝑧 ∈ (𝑢 × 𝑣) ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑢 × 𝑣)))
2827anbi1d 632 . . . . . . . . 9 (𝑧 = ⟨𝐴, 𝐵⟩ → ((𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) ↔ (⟨𝐴, 𝐵⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)))
29282rexbidv 3262 . . . . . . . 8 (𝑧 = ⟨𝐴, 𝐵⟩ → (∃𝑢𝐽𝑣𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) ↔ ∃𝑢𝐽𝑣𝐾 (⟨𝐴, 𝐵⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)))
3029rspccv 3571 . . . . . . 7 (∀𝑧𝑤𝑢𝐽𝑣𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → (⟨𝐴, 𝐵⟩ ∈ 𝑤 → ∃𝑢𝐽𝑣𝐾 (⟨𝐴, 𝐵⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)))
31 sstr2 3925 . . . . . . . . . . . . 13 ((𝑢 × 𝑣) ⊆ 𝑤 → (𝑤 ⊆ (𝐹𝑈) → (𝑢 × 𝑣) ⊆ (𝐹𝑈)))
3231com12 32 . . . . . . . . . . . 12 (𝑤 ⊆ (𝐹𝑈) → ((𝑢 × 𝑣) ⊆ 𝑤 → (𝑢 × 𝑣) ⊆ (𝐹𝑈)))
3332anim2d 614 . . . . . . . . . . 11 (𝑤 ⊆ (𝐹𝑈) → (((𝐴𝑢𝐵𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → ((𝐴𝑢𝐵𝑣) ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈))))
34 opelxp 5559 . . . . . . . . . . . 12 (⟨𝐴, 𝐵⟩ ∈ (𝑢 × 𝑣) ↔ (𝐴𝑢𝐵𝑣))
3534anbi1i 626 . . . . . . . . . . 11 ((⟨𝐴, 𝐵⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) ↔ ((𝐴𝑢𝐵𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤))
36 df-3an 1086 . . . . . . . . . . 11 ((𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈)) ↔ ((𝐴𝑢𝐵𝑣) ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈)))
3733, 35, 363imtr4g 299 . . . . . . . . . 10 (𝑤 ⊆ (𝐹𝑈) → ((⟨𝐴, 𝐵⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈))))
3837reximdv 3235 . . . . . . . . 9 (𝑤 ⊆ (𝐹𝑈) → (∃𝑣𝐾 (⟨𝐴, 𝐵⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → ∃𝑣𝐾 (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈))))
3938reximdv 3235 . . . . . . . 8 (𝑤 ⊆ (𝐹𝑈) → (∃𝑢𝐽𝑣𝐾 (⟨𝐴, 𝐵⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → ∃𝑢𝐽𝑣𝐾 (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈))))
4039com12 32 . . . . . . 7 (∃𝑢𝐽𝑣𝐾 (⟨𝐴, 𝐵⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → (𝑤 ⊆ (𝐹𝑈) → ∃𝑢𝐽𝑣𝐾 (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈))))
4130, 40syl6 35 . . . . . 6 (∀𝑧𝑤𝑢𝐽𝑣𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → (⟨𝐴, 𝐵⟩ ∈ 𝑤 → (𝑤 ⊆ (𝐹𝑈) → ∃𝑢𝐽𝑣𝐾 (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈)))))
4241impd 414 . . . . 5 (∀𝑧𝑤𝑢𝐽𝑣𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → ((⟨𝐴, 𝐵⟩ ∈ 𝑤𝑤 ⊆ (𝐹𝑈)) → ∃𝑢𝐽𝑣𝐾 (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈))))
4326, 42syl 17 . . . 4 ((𝜑𝑤 ∈ (𝐽 ×t 𝐾)) → ((⟨𝐴, 𝐵⟩ ∈ 𝑤𝑤 ⊆ (𝐹𝑈)) → ∃𝑢𝐽𝑣𝐾 (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈))))
4421, 43sylbid 243 . . 3 ((𝜑𝑤 ∈ (𝐽 ×t 𝐾)) → ((⟨𝐴, 𝐵⟩ ∈ 𝑤 ∧ (𝐹𝑤) ⊆ 𝑈) → ∃𝑢𝐽𝑣𝐾 (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈))))
4544rexlimdva 3246 . 2 (𝜑 → (∃𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝐴, 𝐵⟩ ∈ 𝑤 ∧ (𝐹𝑤) ⊆ 𝑈) → ∃𝑢𝐽𝑣𝐾 (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈))))
467, 45mpd 15 1 (𝜑 → ∃𝑢𝐽𝑣𝐾 (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  ∀wral 3109  ∃wrex 3110   ⊆ wss 3884  ⟨cop 4534  ∪ cuni 4803   × cxp 5521  ◡ccnv 5522  dom cdm 5523   “ cima 5526  Fun wfun 6322  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  TopOnctopon 21519   CnP ccnp 21834   ×t ctx 22169 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-map 8395  df-topgen 16713  df-top 21503  df-topon 21520  df-cnp 21837  df-tx 22171 This theorem is referenced by:  tmdcn2  22698
 Copyright terms: Public domain W3C validator