MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcnpi Structured version   Visualization version   GIF version

Theorem txcnpi 23637
Description: Continuity of a two-argument function at a point. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
txcnpi.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
txcnpi.2 (𝜑𝐾 ∈ (TopOn‘𝑌))
txcnpi.3 (𝜑𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩))
txcnpi.4 (𝜑𝑈𝐿)
txcnpi.5 (𝜑𝐴𝑋)
txcnpi.6 (𝜑𝐵𝑌)
txcnpi.7 (𝜑 → (𝐴𝐹𝐵) ∈ 𝑈)
Assertion
Ref Expression
txcnpi (𝜑 → ∃𝑢𝐽𝑣𝐾 (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈)))
Distinct variable groups:   𝑣,𝑢,𝐴   𝑢,𝐵,𝑣   𝑢,𝐹,𝑣   𝑢,𝐽,𝑣   𝑢,𝐾,𝑣   𝑢,𝑈,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝐿(𝑣,𝑢)   𝑋(𝑣,𝑢)   𝑌(𝑣,𝑢)

Proof of Theorem txcnpi
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcnpi.3 . . 3 (𝜑𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩))
2 txcnpi.4 . . 3 (𝜑𝑈𝐿)
3 df-ov 7451 . . . 4 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
4 txcnpi.7 . . . 4 (𝜑 → (𝐴𝐹𝐵) ∈ 𝑈)
53, 4eqeltrrid 2849 . . 3 (𝜑 → (𝐹‘⟨𝐴, 𝐵⟩) ∈ 𝑈)
6 cnpimaex 23285 . . 3 ((𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ∧ 𝑈𝐿 ∧ (𝐹‘⟨𝐴, 𝐵⟩) ∈ 𝑈) → ∃𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝐴, 𝐵⟩ ∈ 𝑤 ∧ (𝐹𝑤) ⊆ 𝑈))
71, 2, 5, 6syl3anc 1371 . 2 (𝜑 → ∃𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝐴, 𝐵⟩ ∈ 𝑤 ∧ (𝐹𝑤) ⊆ 𝑈))
8 eqid 2740 . . . . . . . . . 10 (𝐽 ×t 𝐾) = (𝐽 ×t 𝐾)
9 eqid 2740 . . . . . . . . . 10 𝐿 = 𝐿
108, 9cnpf 23276 . . . . . . . . 9 (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) → 𝐹: (𝐽 ×t 𝐾)⟶ 𝐿)
111, 10syl 17 . . . . . . . 8 (𝜑𝐹: (𝐽 ×t 𝐾)⟶ 𝐿)
1211adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ (𝐽 ×t 𝐾)) → 𝐹: (𝐽 ×t 𝐾)⟶ 𝐿)
1312ffund 6751 . . . . . 6 ((𝜑𝑤 ∈ (𝐽 ×t 𝐾)) → Fun 𝐹)
14 elssuni 4961 . . . . . . 7 (𝑤 ∈ (𝐽 ×t 𝐾) → 𝑤 (𝐽 ×t 𝐾))
1511fdmd 6757 . . . . . . . . 9 (𝜑 → dom 𝐹 = (𝐽 ×t 𝐾))
1615sseq2d 4041 . . . . . . . 8 (𝜑 → (𝑤 ⊆ dom 𝐹𝑤 (𝐽 ×t 𝐾)))
1716biimpar 477 . . . . . . 7 ((𝜑𝑤 (𝐽 ×t 𝐾)) → 𝑤 ⊆ dom 𝐹)
1814, 17sylan2 592 . . . . . 6 ((𝜑𝑤 ∈ (𝐽 ×t 𝐾)) → 𝑤 ⊆ dom 𝐹)
19 funimass3 7087 . . . . . 6 ((Fun 𝐹𝑤 ⊆ dom 𝐹) → ((𝐹𝑤) ⊆ 𝑈𝑤 ⊆ (𝐹𝑈)))
2013, 18, 19syl2anc 583 . . . . 5 ((𝜑𝑤 ∈ (𝐽 ×t 𝐾)) → ((𝐹𝑤) ⊆ 𝑈𝑤 ⊆ (𝐹𝑈)))
2120anbi2d 629 . . . 4 ((𝜑𝑤 ∈ (𝐽 ×t 𝐾)) → ((⟨𝐴, 𝐵⟩ ∈ 𝑤 ∧ (𝐹𝑤) ⊆ 𝑈) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑤𝑤 ⊆ (𝐹𝑈))))
22 txcnpi.1 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑋))
23 txcnpi.2 . . . . . . 7 (𝜑𝐾 ∈ (TopOn‘𝑌))
24 eltx 23597 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑤 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑧𝑤𝑢𝐽𝑣𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)))
2522, 23, 24syl2anc 583 . . . . . 6 (𝜑 → (𝑤 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑧𝑤𝑢𝐽𝑣𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)))
2625biimpa 476 . . . . 5 ((𝜑𝑤 ∈ (𝐽 ×t 𝐾)) → ∀𝑧𝑤𝑢𝐽𝑣𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤))
27 eleq1 2832 . . . . . . . . . 10 (𝑧 = ⟨𝐴, 𝐵⟩ → (𝑧 ∈ (𝑢 × 𝑣) ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑢 × 𝑣)))
2827anbi1d 630 . . . . . . . . 9 (𝑧 = ⟨𝐴, 𝐵⟩ → ((𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) ↔ (⟨𝐴, 𝐵⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)))
29282rexbidv 3228 . . . . . . . 8 (𝑧 = ⟨𝐴, 𝐵⟩ → (∃𝑢𝐽𝑣𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) ↔ ∃𝑢𝐽𝑣𝐾 (⟨𝐴, 𝐵⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)))
3029rspccv 3632 . . . . . . 7 (∀𝑧𝑤𝑢𝐽𝑣𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → (⟨𝐴, 𝐵⟩ ∈ 𝑤 → ∃𝑢𝐽𝑣𝐾 (⟨𝐴, 𝐵⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)))
31 sstr2 4015 . . . . . . . . . . . . 13 ((𝑢 × 𝑣) ⊆ 𝑤 → (𝑤 ⊆ (𝐹𝑈) → (𝑢 × 𝑣) ⊆ (𝐹𝑈)))
3231com12 32 . . . . . . . . . . . 12 (𝑤 ⊆ (𝐹𝑈) → ((𝑢 × 𝑣) ⊆ 𝑤 → (𝑢 × 𝑣) ⊆ (𝐹𝑈)))
3332anim2d 611 . . . . . . . . . . 11 (𝑤 ⊆ (𝐹𝑈) → (((𝐴𝑢𝐵𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → ((𝐴𝑢𝐵𝑣) ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈))))
34 opelxp 5736 . . . . . . . . . . . 12 (⟨𝐴, 𝐵⟩ ∈ (𝑢 × 𝑣) ↔ (𝐴𝑢𝐵𝑣))
3534anbi1i 623 . . . . . . . . . . 11 ((⟨𝐴, 𝐵⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) ↔ ((𝐴𝑢𝐵𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤))
36 df-3an 1089 . . . . . . . . . . 11 ((𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈)) ↔ ((𝐴𝑢𝐵𝑣) ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈)))
3733, 35, 363imtr4g 296 . . . . . . . . . 10 (𝑤 ⊆ (𝐹𝑈) → ((⟨𝐴, 𝐵⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈))))
3837reximdv 3176 . . . . . . . . 9 (𝑤 ⊆ (𝐹𝑈) → (∃𝑣𝐾 (⟨𝐴, 𝐵⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → ∃𝑣𝐾 (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈))))
3938reximdv 3176 . . . . . . . 8 (𝑤 ⊆ (𝐹𝑈) → (∃𝑢𝐽𝑣𝐾 (⟨𝐴, 𝐵⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → ∃𝑢𝐽𝑣𝐾 (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈))))
4039com12 32 . . . . . . 7 (∃𝑢𝐽𝑣𝐾 (⟨𝐴, 𝐵⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → (𝑤 ⊆ (𝐹𝑈) → ∃𝑢𝐽𝑣𝐾 (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈))))
4130, 40syl6 35 . . . . . 6 (∀𝑧𝑤𝑢𝐽𝑣𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → (⟨𝐴, 𝐵⟩ ∈ 𝑤 → (𝑤 ⊆ (𝐹𝑈) → ∃𝑢𝐽𝑣𝐾 (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈)))))
4241impd 410 . . . . 5 (∀𝑧𝑤𝑢𝐽𝑣𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → ((⟨𝐴, 𝐵⟩ ∈ 𝑤𝑤 ⊆ (𝐹𝑈)) → ∃𝑢𝐽𝑣𝐾 (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈))))
4326, 42syl 17 . . . 4 ((𝜑𝑤 ∈ (𝐽 ×t 𝐾)) → ((⟨𝐴, 𝐵⟩ ∈ 𝑤𝑤 ⊆ (𝐹𝑈)) → ∃𝑢𝐽𝑣𝐾 (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈))))
4421, 43sylbid 240 . . 3 ((𝜑𝑤 ∈ (𝐽 ×t 𝐾)) → ((⟨𝐴, 𝐵⟩ ∈ 𝑤 ∧ (𝐹𝑤) ⊆ 𝑈) → ∃𝑢𝐽𝑣𝐾 (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈))))
4544rexlimdva 3161 . 2 (𝜑 → (∃𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝐴, 𝐵⟩ ∈ 𝑤 ∧ (𝐹𝑤) ⊆ 𝑈) → ∃𝑢𝐽𝑣𝐾 (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈))))
467, 45mpd 15 1 (𝜑 → ∃𝑢𝐽𝑣𝐾 (𝐴𝑢𝐵𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐹𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976  cop 4654   cuni 4931   × cxp 5698  ccnv 5699  dom cdm 5700  cima 5703  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  TopOnctopon 22937   CnP ccnp 23254   ×t ctx 23589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-topgen 17503  df-top 22921  df-topon 22938  df-cnp 23257  df-tx 23591
This theorem is referenced by:  tmdcn2  24118
  Copyright terms: Public domain W3C validator