| Step | Hyp | Ref
| Expression |
| 1 | | txcnpi.3 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝐴, 𝐵〉)) |
| 2 | | txcnpi.4 |
. . 3
⊢ (𝜑 → 𝑈 ∈ 𝐿) |
| 3 | | df-ov 7434 |
. . . 4
⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) |
| 4 | | txcnpi.7 |
. . . 4
⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝑈) |
| 5 | 3, 4 | eqeltrrid 2846 |
. . 3
⊢ (𝜑 → (𝐹‘〈𝐴, 𝐵〉) ∈ 𝑈) |
| 6 | | cnpimaex 23264 |
. . 3
⊢ ((𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝐴, 𝐵〉) ∧ 𝑈 ∈ 𝐿 ∧ (𝐹‘〈𝐴, 𝐵〉) ∈ 𝑈) → ∃𝑤 ∈ (𝐽 ×t 𝐾)(〈𝐴, 𝐵〉 ∈ 𝑤 ∧ (𝐹 “ 𝑤) ⊆ 𝑈)) |
| 7 | 1, 2, 5, 6 | syl3anc 1373 |
. 2
⊢ (𝜑 → ∃𝑤 ∈ (𝐽 ×t 𝐾)(〈𝐴, 𝐵〉 ∈ 𝑤 ∧ (𝐹 “ 𝑤) ⊆ 𝑈)) |
| 8 | | eqid 2737 |
. . . . . . . . . 10
⊢ ∪ (𝐽
×t 𝐾) =
∪ (𝐽 ×t 𝐾) |
| 9 | | eqid 2737 |
. . . . . . . . . 10
⊢ ∪ 𝐿 =
∪ 𝐿 |
| 10 | 8, 9 | cnpf 23255 |
. . . . . . . . 9
⊢ (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝐴, 𝐵〉) → 𝐹:∪ (𝐽 ×t 𝐾)⟶∪ 𝐿) |
| 11 | 1, 10 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:∪ (𝐽 ×t 𝐾)⟶∪ 𝐿) |
| 12 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 ×t 𝐾)) → 𝐹:∪ (𝐽 ×t 𝐾)⟶∪ 𝐿) |
| 13 | 12 | ffund 6740 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 ×t 𝐾)) → Fun 𝐹) |
| 14 | | elssuni 4937 |
. . . . . . 7
⊢ (𝑤 ∈ (𝐽 ×t 𝐾) → 𝑤 ⊆ ∪ (𝐽 ×t 𝐾)) |
| 15 | 11 | fdmd 6746 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝐹 = ∪ (𝐽 ×t 𝐾)) |
| 16 | 15 | sseq2d 4016 |
. . . . . . . 8
⊢ (𝜑 → (𝑤 ⊆ dom 𝐹 ↔ 𝑤 ⊆ ∪ (𝐽 ×t 𝐾))) |
| 17 | 16 | biimpar 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ⊆ ∪ (𝐽 ×t 𝐾)) → 𝑤 ⊆ dom 𝐹) |
| 18 | 14, 17 | sylan2 593 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 ×t 𝐾)) → 𝑤 ⊆ dom 𝐹) |
| 19 | | funimass3 7074 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝑤 ⊆ dom 𝐹) → ((𝐹 “ 𝑤) ⊆ 𝑈 ↔ 𝑤 ⊆ (◡𝐹 “ 𝑈))) |
| 20 | 13, 18, 19 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 ×t 𝐾)) → ((𝐹 “ 𝑤) ⊆ 𝑈 ↔ 𝑤 ⊆ (◡𝐹 “ 𝑈))) |
| 21 | 20 | anbi2d 630 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 ×t 𝐾)) → ((〈𝐴, 𝐵〉 ∈ 𝑤 ∧ (𝐹 “ 𝑤) ⊆ 𝑈) ↔ (〈𝐴, 𝐵〉 ∈ 𝑤 ∧ 𝑤 ⊆ (◡𝐹 “ 𝑈)))) |
| 22 | | txcnpi.1 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 23 | | txcnpi.2 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| 24 | | eltx 23576 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑤 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑧 ∈ 𝑤 ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤))) |
| 25 | 22, 23, 24 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑧 ∈ 𝑤 ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤))) |
| 26 | 25 | biimpa 476 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 ×t 𝐾)) → ∀𝑧 ∈ 𝑤 ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) |
| 27 | | eleq1 2829 |
. . . . . . . . . 10
⊢ (𝑧 = 〈𝐴, 𝐵〉 → (𝑧 ∈ (𝑢 × 𝑣) ↔ 〈𝐴, 𝐵〉 ∈ (𝑢 × 𝑣))) |
| 28 | 27 | anbi1d 631 |
. . . . . . . . 9
⊢ (𝑧 = 〈𝐴, 𝐵〉 → ((𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) ↔ (〈𝐴, 𝐵〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤))) |
| 29 | 28 | 2rexbidv 3222 |
. . . . . . . 8
⊢ (𝑧 = 〈𝐴, 𝐵〉 → (∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) ↔ ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (〈𝐴, 𝐵〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤))) |
| 30 | 29 | rspccv 3619 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝑤 ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → (〈𝐴, 𝐵〉 ∈ 𝑤 → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (〈𝐴, 𝐵〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤))) |
| 31 | | sstr2 3990 |
. . . . . . . . . . . . 13
⊢ ((𝑢 × 𝑣) ⊆ 𝑤 → (𝑤 ⊆ (◡𝐹 “ 𝑈) → (𝑢 × 𝑣) ⊆ (◡𝐹 “ 𝑈))) |
| 32 | 31 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝑤 ⊆ (◡𝐹 “ 𝑈) → ((𝑢 × 𝑣) ⊆ 𝑤 → (𝑢 × 𝑣) ⊆ (◡𝐹 “ 𝑈))) |
| 33 | 32 | anim2d 612 |
. . . . . . . . . . 11
⊢ (𝑤 ⊆ (◡𝐹 “ 𝑈) → (((𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → ((𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣) ∧ (𝑢 × 𝑣) ⊆ (◡𝐹 “ 𝑈)))) |
| 34 | | opelxp 5721 |
. . . . . . . . . . . 12
⊢
(〈𝐴, 𝐵〉 ∈ (𝑢 × 𝑣) ↔ (𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣)) |
| 35 | 34 | anbi1i 624 |
. . . . . . . . . . 11
⊢
((〈𝐴, 𝐵〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) ↔ ((𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) |
| 36 | | df-3an 1089 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐹 “ 𝑈)) ↔ ((𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣) ∧ (𝑢 × 𝑣) ⊆ (◡𝐹 “ 𝑈))) |
| 37 | 33, 35, 36 | 3imtr4g 296 |
. . . . . . . . . 10
⊢ (𝑤 ⊆ (◡𝐹 “ 𝑈) → ((〈𝐴, 𝐵〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → (𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐹 “ 𝑈)))) |
| 38 | 37 | reximdv 3170 |
. . . . . . . . 9
⊢ (𝑤 ⊆ (◡𝐹 “ 𝑈) → (∃𝑣 ∈ 𝐾 (〈𝐴, 𝐵〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → ∃𝑣 ∈ 𝐾 (𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐹 “ 𝑈)))) |
| 39 | 38 | reximdv 3170 |
. . . . . . . 8
⊢ (𝑤 ⊆ (◡𝐹 “ 𝑈) → (∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (〈𝐴, 𝐵〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐹 “ 𝑈)))) |
| 40 | 39 | com12 32 |
. . . . . . 7
⊢
(∃𝑢 ∈
𝐽 ∃𝑣 ∈ 𝐾 (〈𝐴, 𝐵〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → (𝑤 ⊆ (◡𝐹 “ 𝑈) → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐹 “ 𝑈)))) |
| 41 | 30, 40 | syl6 35 |
. . . . . 6
⊢
(∀𝑧 ∈
𝑤 ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → (〈𝐴, 𝐵〉 ∈ 𝑤 → (𝑤 ⊆ (◡𝐹 “ 𝑈) → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐹 “ 𝑈))))) |
| 42 | 41 | impd 410 |
. . . . 5
⊢
(∀𝑧 ∈
𝑤 ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (𝑧 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → ((〈𝐴, 𝐵〉 ∈ 𝑤 ∧ 𝑤 ⊆ (◡𝐹 “ 𝑈)) → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐹 “ 𝑈)))) |
| 43 | 26, 42 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 ×t 𝐾)) → ((〈𝐴, 𝐵〉 ∈ 𝑤 ∧ 𝑤 ⊆ (◡𝐹 “ 𝑈)) → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐹 “ 𝑈)))) |
| 44 | 21, 43 | sylbid 240 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 ×t 𝐾)) → ((〈𝐴, 𝐵〉 ∈ 𝑤 ∧ (𝐹 “ 𝑤) ⊆ 𝑈) → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐹 “ 𝑈)))) |
| 45 | 44 | rexlimdva 3155 |
. 2
⊢ (𝜑 → (∃𝑤 ∈ (𝐽 ×t 𝐾)(〈𝐴, 𝐵〉 ∈ 𝑤 ∧ (𝐹 “ 𝑤) ⊆ 𝑈) → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐹 “ 𝑈)))) |
| 46 | 7, 45 | mpd 15 |
1
⊢ (𝜑 → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐹 “ 𝑈))) |