![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnpimaex | Structured version Visualization version GIF version |
Description: Property of a function continuous at a point. (Contributed by FL, 31-Dec-2006.) |
Ref | Expression |
---|---|
cnpimaex | ⊢ ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝐴) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2797 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | eqid 2797 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 1, 2 | iscnp2 21535 | . . . 4 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ ∪ 𝐽) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
4 | 3 | simprbi 497 | . . 3 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)))) |
5 | eleq2 2873 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝐹‘𝑃) ∈ 𝑦 ↔ (𝐹‘𝑃) ∈ 𝐴)) | |
6 | sseq2 3920 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → ((𝐹 “ 𝑥) ⊆ 𝑦 ↔ (𝐹 “ 𝑥) ⊆ 𝐴)) | |
7 | 6 | anbi2d 628 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) ↔ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝐴))) |
8 | 7 | rexbidv 3262 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝐴))) |
9 | 5, 8 | imbi12d 346 | . . . 4 ⊢ (𝑦 = 𝐴 → (((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ↔ ((𝐹‘𝑃) ∈ 𝐴 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝐴)))) |
10 | 9 | rspccv 3558 | . . 3 ⊢ (∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → (𝐴 ∈ 𝐾 → ((𝐹‘𝑃) ∈ 𝐴 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝐴)))) |
11 | 4, 10 | simpl2im 504 | . 2 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐴 ∈ 𝐾 → ((𝐹‘𝑃) ∈ 𝐴 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝐴)))) |
12 | 11 | 3imp 1104 | 1 ⊢ ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝐴) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ∀wral 3107 ∃wrex 3108 ⊆ wss 3865 ∪ cuni 4751 “ cima 5453 ⟶wf 6228 ‘cfv 6232 (class class class)co 7023 Topctop 21189 CnP ccnp 21521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-fv 6240 df-ov 7026 df-oprab 7027 df-mpo 7028 df-1st 7552 df-2nd 7553 df-map 8265 df-top 21190 df-topon 21207 df-cnp 21524 |
This theorem is referenced by: iscnp4 21559 cnpnei 21560 cnpco 21563 cncnp 21576 cnpresti 21584 lmcnp 21600 txcnpi 21904 txcnp 21916 ptcnplem 21917 cnpflfi 22295 ghmcnp 22410 xrlimcnp 25232 cnambfre 34492 |
Copyright terms: Public domain | W3C validator |