![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnpimaex | Structured version Visualization version GIF version |
Description: Property of a function continuous at a point. (Contributed by FL, 31-Dec-2006.) |
Ref | Expression |
---|---|
cnpimaex | ⊢ ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝐴) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | eqid 2733 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 1, 2 | iscnp2 22743 | . . . 4 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ ∪ 𝐽) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
4 | 3 | simprbi 498 | . . 3 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)))) |
5 | eleq2 2823 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝐹‘𝑃) ∈ 𝑦 ↔ (𝐹‘𝑃) ∈ 𝐴)) | |
6 | sseq2 4009 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → ((𝐹 “ 𝑥) ⊆ 𝑦 ↔ (𝐹 “ 𝑥) ⊆ 𝐴)) | |
7 | 6 | anbi2d 630 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) ↔ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝐴))) |
8 | 7 | rexbidv 3179 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝐴))) |
9 | 5, 8 | imbi12d 345 | . . . 4 ⊢ (𝑦 = 𝐴 → (((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ↔ ((𝐹‘𝑃) ∈ 𝐴 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝐴)))) |
10 | 9 | rspccv 3610 | . . 3 ⊢ (∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → (𝐴 ∈ 𝐾 → ((𝐹‘𝑃) ∈ 𝐴 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝐴)))) |
11 | 4, 10 | simpl2im 505 | . 2 ⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐴 ∈ 𝐾 → ((𝐹‘𝑃) ∈ 𝐴 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝐴)))) |
12 | 11 | 3imp 1112 | 1 ⊢ ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝐴) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 ⊆ wss 3949 ∪ cuni 4909 “ cima 5680 ⟶wf 6540 ‘cfv 6544 (class class class)co 7409 Topctop 22395 CnP ccnp 22729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-map 8822 df-top 22396 df-topon 22413 df-cnp 22732 |
This theorem is referenced by: iscnp4 22767 cnpnei 22768 cnpco 22771 cncnp 22784 cnpresti 22792 lmcnp 22808 txcnpi 23112 txcnp 23124 ptcnplem 23125 cnpflfi 23503 ghmcnp 23619 xrlimcnp 26473 cnambfre 36536 |
Copyright terms: Public domain | W3C validator |