MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpimaex Structured version   Visualization version   GIF version

Theorem cnpimaex 23264
Description: Property of a function continuous at a point. (Contributed by FL, 31-Dec-2006.)
Assertion
Ref Expression
cnpimaex ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴𝐾 ∧ (𝐹𝑃) ∈ 𝐴) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑃

Proof of Theorem cnpimaex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . 5 𝐽 = 𝐽
2 eqid 2737 . . . . 5 𝐾 = 𝐾
31, 2iscnp2 23247 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 𝐽) ∧ (𝐹: 𝐽 𝐾 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
43simprbi 496 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐹: 𝐽 𝐾 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))))
5 eleq2 2830 . . . . 5 (𝑦 = 𝐴 → ((𝐹𝑃) ∈ 𝑦 ↔ (𝐹𝑃) ∈ 𝐴))
6 sseq2 4010 . . . . . . 7 (𝑦 = 𝐴 → ((𝐹𝑥) ⊆ 𝑦 ↔ (𝐹𝑥) ⊆ 𝐴))
76anbi2d 630 . . . . . 6 (𝑦 = 𝐴 → ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) ↔ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝐴)))
87rexbidv 3179 . . . . 5 (𝑦 = 𝐴 → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝐴)))
95, 8imbi12d 344 . . . 4 (𝑦 = 𝐴 → (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ↔ ((𝐹𝑃) ∈ 𝐴 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝐴))))
109rspccv 3619 . . 3 (∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) → (𝐴𝐾 → ((𝐹𝑃) ∈ 𝐴 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝐴))))
114, 10simpl2im 503 . 2 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐴𝐾 → ((𝐹𝑃) ∈ 𝐴 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝐴))))
12113imp 1111 1 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴𝐾 ∧ (𝐹𝑃) ∈ 𝐴) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  wss 3951   cuni 4907  cima 5688  wf 6557  cfv 6561  (class class class)co 7431  Topctop 22899   CnP ccnp 23233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868  df-top 22900  df-topon 22917  df-cnp 23236
This theorem is referenced by:  iscnp4  23271  cnpnei  23272  cnpco  23275  cncnp  23288  cnpresti  23296  lmcnp  23312  txcnpi  23616  txcnp  23628  ptcnplem  23629  cnpflfi  24007  ghmcnp  24123  xrlimcnp  27011  cnambfre  37675
  Copyright terms: Public domain W3C validator