Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvreacos Structured version   Visualization version   GIF version

Theorem dvreacos 34512
Description: Real derivative of arccosine. (Contributed by Brendan Leahy, 3-Aug-2017.) (Proof shortened by Brendan Leahy, 18-Dec-2018.)
Assertion
Ref Expression
dvreacos (ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2)))))

Proof of Theorem dvreacos
StepHypRef Expression
1 acosf 25133 . . . . . 6 arccos:ℂ⟶ℂ
21a1i 11 . . . . 5 (⊤ → arccos:ℂ⟶ℂ)
3 ioossre 12648 . . . . . . 7 (-1(,)1) ⊆ ℝ
4 ax-resscn 10440 . . . . . . 7 ℝ ⊆ ℂ
53, 4sstri 3898 . . . . . 6 (-1(,)1) ⊆ ℂ
65a1i 11 . . . . 5 (⊤ → (-1(,)1) ⊆ ℂ)
72, 6feqresmpt 6602 . . . 4 (⊤ → (arccos ↾ (-1(,)1)) = (𝑥 ∈ (-1(,)1) ↦ (arccos‘𝑥)))
87oveq2d 7032 . . 3 (⊤ → (ℝ D (arccos ↾ (-1(,)1))) = (ℝ D (𝑥 ∈ (-1(,)1) ↦ (arccos‘𝑥))))
9 eqid 2795 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10 reelprrecn 10475 . . . . 5 ℝ ∈ {ℝ, ℂ}
1110a1i 11 . . . 4 (⊤ → ℝ ∈ {ℝ, ℂ})
129recld2 23105 . . . . . 6 ℝ ∈ (Clsd‘(TopOpen‘ℂfld))
13 neg1rr 11600 . . . . . . . . 9 -1 ∈ ℝ
14 iocmnfcld 23060 . . . . . . . . 9 (-1 ∈ ℝ → (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))))
1513, 14ax-mp 5 . . . . . . . 8 (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,)))
16 1re 10487 . . . . . . . . 9 1 ∈ ℝ
17 icopnfcld 23059 . . . . . . . . 9 (1 ∈ ℝ → (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
1816, 17ax-mp 5 . . . . . . . 8 (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))
19 uncld 21333 . . . . . . . 8 (((-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))) ∧ (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran (,))))
2015, 18, 19mp2an 688 . . . . . . 7 ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran (,)))
219tgioo2 23094 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2221fveq2i 6541 . . . . . . 7 (Clsd‘(topGen‘ran (,))) = (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))
2320, 22eleqtri 2881 . . . . . 6 ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))
24 restcldr 21466 . . . . . 6 ((ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)))
2512, 23, 24mp2an 688 . . . . 5 ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld))
269cnfldtopon 23074 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2726toponunii 21208 . . . . . 6 ℂ = (TopOpen‘ℂfld)
2827cldopn 21323 . . . . 5 (((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld))
2925, 28mp1i 13 . . . 4 (⊤ → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld))
30 incom 4099 . . . . . 6 (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ)
31 eqid 2795 . . . . . . 7 (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
3231asindmre 34508 . . . . . 6 ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ) = (-1(,)1)
3330, 32eqtri 2819 . . . . 5 (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (-1(,)1)
3433a1i 11 . . . 4 (⊤ → (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (-1(,)1))
35 eldifi 4024 . . . . . 6 (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → 𝑥 ∈ ℂ)
36 acoscl 25134 . . . . . 6 (𝑥 ∈ ℂ → (arccos‘𝑥) ∈ ℂ)
3735, 36syl 17 . . . . 5 (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → (arccos‘𝑥) ∈ ℂ)
3837adantl 482 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) → (arccos‘𝑥) ∈ ℂ)
39 ovexd 7050 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) → (-1 / (√‘(1 − (𝑥↑2)))) ∈ V)
4031dvacos 34510 . . . . 5 (ℂ D (arccos ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (-1 / (√‘(1 − (𝑥↑2)))))
41 difssd 4030 . . . . . . 7 (⊤ → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⊆ ℂ)
422, 41feqresmpt 6602 . . . . . 6 (⊤ → (arccos ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arccos‘𝑥)))
4342oveq2d 7032 . . . . 5 (⊤ → (ℂ D (arccos ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))))) = (ℂ D (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arccos‘𝑥))))
4440, 43syl5reqr 2846 . . . 4 (⊤ → (ℂ D (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arccos‘𝑥))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (-1 / (√‘(1 − (𝑥↑2))))))
459, 11, 29, 34, 38, 39, 44dvmptres3 24236 . . 3 (⊤ → (ℝ D (𝑥 ∈ (-1(,)1) ↦ (arccos‘𝑥))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2))))))
468, 45eqtrd 2831 . 2 (⊤ → (ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2))))))
4746mptru 1529 1 (ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1522  wtru 1523  wcel 2081  Vcvv 3437  cdif 3856  cun 3857  cin 3858  wss 3859  {cpr 4474  cmpt 5041  ran crn 5444  cres 5445  wf 6221  cfv 6225  (class class class)co 7016  cc 10381  cr 10382  1c1 10384  +∞cpnf 10518  -∞cmnf 10519  cmin 10717  -cneg 10718   / cdiv 11145  2c2 11540  (,)cioo 12588  (,]cioc 12589  [,)cico 12590  cexp 13279  csqrt 14426  t crest 16523  TopOpenctopn 16524  topGenctg 16540  fldccnfld 20227  Clsdccld 21308   D cdv 24144  arccoscacos 25122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ioc 12593  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-fac 13484  df-bc 13513  df-hash 13541  df-shft 14260  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-limsup 14662  df-clim 14679  df-rlim 14680  df-sum 14877  df-ef 15254  df-sin 15256  df-cos 15257  df-tan 15258  df-pi 15259  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-mulg 17982  df-cntz 18188  df-cmn 18635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-cmp 21679  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-limc 24147  df-dv 24148  df-log 24821  df-cxp 24822  df-asin 25124  df-acos 25125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator