| Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvreacos | Structured version Visualization version GIF version | ||
| Description: Real derivative of arccosine. (Contributed by Brendan Leahy, 3-Aug-2017.) (Proof shortened by Brendan Leahy, 18-Dec-2018.) |
| Ref | Expression |
|---|---|
| dvreacos | ⊢ (ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acosf 26812 | . . . . . 6 ⊢ arccos:ℂ⟶ℂ | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (⊤ → arccos:ℂ⟶ℂ) |
| 3 | ioossre 13309 | . . . . . . 7 ⊢ (-1(,)1) ⊆ ℝ | |
| 4 | ax-resscn 11070 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 5 | 3, 4 | sstri 3940 | . . . . . 6 ⊢ (-1(,)1) ⊆ ℂ |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → (-1(,)1) ⊆ ℂ) |
| 7 | 2, 6 | feqresmpt 6897 | . . . 4 ⊢ (⊤ → (arccos ↾ (-1(,)1)) = (𝑥 ∈ (-1(,)1) ↦ (arccos‘𝑥))) |
| 8 | 7 | oveq2d 7368 | . . 3 ⊢ (⊤ → (ℝ D (arccos ↾ (-1(,)1))) = (ℝ D (𝑥 ∈ (-1(,)1) ↦ (arccos‘𝑥)))) |
| 9 | eqid 2733 | . . . 4 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 10 | reelprrecn 11105 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ∈ {ℝ, ℂ}) |
| 12 | 9 | recld2 24731 | . . . . . 6 ⊢ ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) |
| 13 | neg1rr 12118 | . . . . . . . . 9 ⊢ -1 ∈ ℝ | |
| 14 | iocmnfcld 24684 | . . . . . . . . 9 ⊢ (-1 ∈ ℝ → (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,)))) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . . . 8 ⊢ (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))) |
| 16 | 1re 11119 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 17 | icopnfcld 24683 | . . . . . . . . 9 ⊢ (1 ∈ ℝ → (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . . 8 ⊢ (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,))) |
| 19 | uncld 22957 | . . . . . . . 8 ⊢ (((-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))) ∧ (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran (,)))) | |
| 20 | 15, 18, 19 | mp2an 692 | . . . . . . 7 ⊢ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran (,))) |
| 21 | tgioo4 24721 | . . . . . . . 8 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 22 | 21 | fveq2i 6831 | . . . . . . 7 ⊢ (Clsd‘(topGen‘ran (,))) = (Clsd‘((TopOpen‘ℂfld) ↾t ℝ)) |
| 23 | 20, 22 | eleqtri 2831 | . . . . . 6 ⊢ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ)) |
| 24 | restcldr 23090 | . . . . . 6 ⊢ ((ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld))) | |
| 25 | 12, 23, 24 | mp2an 692 | . . . . 5 ⊢ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)) |
| 26 | 9 | cnfldtopon 24698 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 27 | 26 | toponunii 22832 | . . . . . 6 ⊢ ℂ = ∪ (TopOpen‘ℂfld) |
| 28 | 27 | cldopn 22947 | . . . . 5 ⊢ (((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld)) |
| 29 | 25, 28 | mp1i 13 | . . . 4 ⊢ (⊤ → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld)) |
| 30 | incom 4158 | . . . . . 6 ⊢ (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ) | |
| 31 | eqid 2733 | . . . . . . 7 ⊢ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) | |
| 32 | 31 | asindmre 37764 | . . . . . 6 ⊢ ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ) = (-1(,)1) |
| 33 | 30, 32 | eqtri 2756 | . . . . 5 ⊢ (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (-1(,)1) |
| 34 | 33 | a1i 11 | . . . 4 ⊢ (⊤ → (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (-1(,)1)) |
| 35 | eldifi 4080 | . . . . . 6 ⊢ (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → 𝑥 ∈ ℂ) | |
| 36 | acoscl 26813 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (arccos‘𝑥) ∈ ℂ) | |
| 37 | 35, 36 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → (arccos‘𝑥) ∈ ℂ) |
| 38 | 37 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) → (arccos‘𝑥) ∈ ℂ) |
| 39 | ovexd 7387 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) → (-1 / (√‘(1 − (𝑥↑2)))) ∈ V) | |
| 40 | difssd 4086 | . . . . . . 7 ⊢ (⊤ → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⊆ ℂ) | |
| 41 | 2, 40 | feqresmpt 6897 | . . . . . 6 ⊢ (⊤ → (arccos ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arccos‘𝑥))) |
| 42 | 41 | oveq2d 7368 | . . . . 5 ⊢ (⊤ → (ℂ D (arccos ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))))) = (ℂ D (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arccos‘𝑥)))) |
| 43 | 31 | dvacos 37766 | . . . . 5 ⊢ (ℂ D (arccos ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (-1 / (√‘(1 − (𝑥↑2))))) |
| 44 | 42, 43 | eqtr3di 2783 | . . . 4 ⊢ (⊤ → (ℂ D (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arccos‘𝑥))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (-1 / (√‘(1 − (𝑥↑2)))))) |
| 45 | 9, 11, 29, 34, 38, 39, 44 | dvmptres3 25888 | . . 3 ⊢ (⊤ → (ℝ D (𝑥 ∈ (-1(,)1) ↦ (arccos‘𝑥))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2)))))) |
| 46 | 8, 45 | eqtrd 2768 | . 2 ⊢ (⊤ → (ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2)))))) |
| 47 | 46 | mptru 1548 | 1 ⊢ (ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 ∪ cun 3896 ∩ cin 3897 ⊆ wss 3898 {cpr 4577 ↦ cmpt 5174 ran crn 5620 ↾ cres 5621 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 ℝcr 11012 1c1 11014 +∞cpnf 11150 -∞cmnf 11151 − cmin 11351 -cneg 11352 / cdiv 11781 2c2 12187 (,)cioo 13247 (,]cioc 13248 [,)cico 13249 ↑cexp 13970 √csqrt 15142 ↾t crest 17326 TopOpenctopn 17327 topGenctg 17343 ℂfldccnfld 21293 Clsdccld 22932 D cdv 25792 arccoscacos 26801 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ioo 13251 df-ioc 13252 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-fac 14183 df-bc 14212 df-hash 14240 df-shft 14976 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-limsup 15380 df-clim 15397 df-rlim 15398 df-sum 15596 df-ef 15976 df-sin 15978 df-cos 15979 df-tan 15980 df-pi 15981 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-rest 17328 df-topn 17329 df-0g 17347 df-gsum 17348 df-topgen 17349 df-pt 17350 df-prds 17353 df-xrs 17408 df-qtop 17413 df-imas 17414 df-xps 17416 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19231 df-cmn 19696 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-fbas 21290 df-fg 21291 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lp 23052 df-perf 23053 df-cn 23143 df-cnp 23144 df-haus 23231 df-cmp 23303 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 df-limc 25795 df-dv 25796 df-log 26493 df-cxp 26494 df-asin 26803 df-acos 26804 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |