Step | Hyp | Ref
| Expression |
1 | | acosf 26376 |
. . . . . 6
β’
arccos:ββΆβ |
2 | 1 | a1i 11 |
. . . . 5
β’ (β€
β arccos:ββΆβ) |
3 | | ioossre 13384 |
. . . . . . 7
β’ (-1(,)1)
β β |
4 | | ax-resscn 11166 |
. . . . . . 7
β’ β
β β |
5 | 3, 4 | sstri 3991 |
. . . . . 6
β’ (-1(,)1)
β β |
6 | 5 | a1i 11 |
. . . . 5
β’ (β€
β (-1(,)1) β β) |
7 | 2, 6 | feqresmpt 6961 |
. . . 4
β’ (β€
β (arccos βΎ (-1(,)1)) = (π₯ β (-1(,)1) β¦ (arccosβπ₯))) |
8 | 7 | oveq2d 7424 |
. . 3
β’ (β€
β (β D (arccos βΎ (-1(,)1))) = (β D (π₯ β (-1(,)1) β¦ (arccosβπ₯)))) |
9 | | eqid 2732 |
. . . 4
β’
(TopOpenββfld) =
(TopOpenββfld) |
10 | | reelprrecn 11201 |
. . . . 5
β’ β
β {β, β} |
11 | 10 | a1i 11 |
. . . 4
β’ (β€
β β β {β, β}) |
12 | 9 | recld2 24329 |
. . . . . 6
β’ β
β (Clsdβ(TopOpenββfld)) |
13 | | neg1rr 12326 |
. . . . . . . . 9
β’ -1 β
β |
14 | | iocmnfcld 24284 |
. . . . . . . . 9
β’ (-1
β β β (-β(,]-1) β (Clsdβ(topGenβran
(,)))) |
15 | 13, 14 | ax-mp 5 |
. . . . . . . 8
β’
(-β(,]-1) β (Clsdβ(topGenβran
(,))) |
16 | | 1re 11213 |
. . . . . . . . 9
β’ 1 β
β |
17 | | icopnfcld 24283 |
. . . . . . . . 9
β’ (1 β
β β (1[,)+β) β (Clsdβ(topGenβran
(,)))) |
18 | 16, 17 | ax-mp 5 |
. . . . . . . 8
β’
(1[,)+β) β (Clsdβ(topGenβran
(,))) |
19 | | uncld 22544 |
. . . . . . . 8
β’
(((-β(,]-1) β (Clsdβ(topGenβran (,))) β§
(1[,)+β) β (Clsdβ(topGenβran (,)))) β
((-β(,]-1) βͺ (1[,)+β)) β (Clsdβ(topGenβran
(,)))) |
20 | 15, 18, 19 | mp2an 690 |
. . . . . . 7
β’
((-β(,]-1) βͺ (1[,)+β)) β
(Clsdβ(topGenβran (,))) |
21 | 9 | tgioo2 24318 |
. . . . . . . 8
β’
(topGenβran (,)) = ((TopOpenββfld)
βΎt β) |
22 | 21 | fveq2i 6894 |
. . . . . . 7
β’
(Clsdβ(topGenβran (,))) =
(Clsdβ((TopOpenββfld) βΎt
β)) |
23 | 20, 22 | eleqtri 2831 |
. . . . . 6
β’
((-β(,]-1) βͺ (1[,)+β)) β
(Clsdβ((TopOpenββfld) βΎt
β)) |
24 | | restcldr 22677 |
. . . . . 6
β’ ((β
β (Clsdβ(TopOpenββfld)) β§
((-β(,]-1) βͺ (1[,)+β)) β
(Clsdβ((TopOpenββfld) βΎt
β))) β ((-β(,]-1) βͺ (1[,)+β)) β
(Clsdβ(TopOpenββfld))) |
25 | 12, 23, 24 | mp2an 690 |
. . . . 5
β’
((-β(,]-1) βͺ (1[,)+β)) β
(Clsdβ(TopOpenββfld)) |
26 | 9 | cnfldtopon 24298 |
. . . . . . 7
β’
(TopOpenββfld) β
(TopOnββ) |
27 | 26 | toponunii 22417 |
. . . . . 6
β’ β =
βͺ
(TopOpenββfld) |
28 | 27 | cldopn 22534 |
. . . . 5
β’
(((-β(,]-1) βͺ (1[,)+β)) β
(Clsdβ(TopOpenββfld)) β (β β
((-β(,]-1) βͺ (1[,)+β))) β
(TopOpenββfld)) |
29 | 25, 28 | mp1i 13 |
. . . 4
β’ (β€
β (β β ((-β(,]-1) βͺ (1[,)+β))) β
(TopOpenββfld)) |
30 | | incom 4201 |
. . . . . 6
β’ (β
β© (β β ((-β(,]-1) βͺ (1[,)+β)))) = ((β
β ((-β(,]-1) βͺ (1[,)+β))) β© β) |
31 | | eqid 2732 |
. . . . . . 7
β’ (β
β ((-β(,]-1) βͺ (1[,)+β))) = (β β
((-β(,]-1) βͺ (1[,)+β))) |
32 | 31 | asindmre 36566 |
. . . . . 6
β’ ((β
β ((-β(,]-1) βͺ (1[,)+β))) β© β) =
(-1(,)1) |
33 | 30, 32 | eqtri 2760 |
. . . . 5
β’ (β
β© (β β ((-β(,]-1) βͺ (1[,)+β)))) =
(-1(,)1) |
34 | 33 | a1i 11 |
. . . 4
β’ (β€
β (β β© (β β ((-β(,]-1) βͺ (1[,)+β))))
= (-1(,)1)) |
35 | | eldifi 4126 |
. . . . . 6
β’ (π₯ β (β β
((-β(,]-1) βͺ (1[,)+β))) β π₯ β β) |
36 | | acoscl 26377 |
. . . . . 6
β’ (π₯ β β β
(arccosβπ₯) β
β) |
37 | 35, 36 | syl 17 |
. . . . 5
β’ (π₯ β (β β
((-β(,]-1) βͺ (1[,)+β))) β (arccosβπ₯) β β) |
38 | 37 | adantl 482 |
. . . 4
β’
((β€ β§ π₯
β (β β ((-β(,]-1) βͺ (1[,)+β)))) β
(arccosβπ₯) β
β) |
39 | | ovexd 7443 |
. . . 4
β’
((β€ β§ π₯
β (β β ((-β(,]-1) βͺ (1[,)+β)))) β (-1 /
(ββ(1 β (π₯β2)))) β V) |
40 | | difssd 4132 |
. . . . . . 7
β’ (β€
β (β β ((-β(,]-1) βͺ (1[,)+β))) β
β) |
41 | 2, 40 | feqresmpt 6961 |
. . . . . 6
β’ (β€
β (arccos βΎ (β β ((-β(,]-1) βͺ
(1[,)+β)))) = (π₯
β (β β ((-β(,]-1) βͺ (1[,)+β))) β¦
(arccosβπ₯))) |
42 | 41 | oveq2d 7424 |
. . . . 5
β’ (β€
β (β D (arccos βΎ (β β ((-β(,]-1) βͺ
(1[,)+β))))) = (β D (π₯ β (β β ((-β(,]-1)
βͺ (1[,)+β))) β¦ (arccosβπ₯)))) |
43 | 31 | dvacos 36568 |
. . . . 5
β’ (β
D (arccos βΎ (β β ((-β(,]-1) βͺ (1[,)+β))))) =
(π₯ β (β β
((-β(,]-1) βͺ (1[,)+β))) β¦ (-1 / (ββ(1 β
(π₯β2))))) |
44 | 42, 43 | eqtr3di 2787 |
. . . 4
β’ (β€
β (β D (π₯ β
(β β ((-β(,]-1) βͺ (1[,)+β))) β¦
(arccosβπ₯))) = (π₯ β (β β
((-β(,]-1) βͺ (1[,)+β))) β¦ (-1 / (ββ(1 β
(π₯β2)))))) |
45 | 9, 11, 29, 34, 38, 39, 44 | dvmptres3 25472 |
. . 3
β’ (β€
β (β D (π₯ β
(-1(,)1) β¦ (arccosβπ₯))) = (π₯ β (-1(,)1) β¦ (-1 /
(ββ(1 β (π₯β2)))))) |
46 | 8, 45 | eqtrd 2772 |
. 2
β’ (β€
β (β D (arccos βΎ (-1(,)1))) = (π₯ β (-1(,)1) β¦ (-1 /
(ββ(1 β (π₯β2)))))) |
47 | 46 | mptru 1548 |
1
β’ (β
D (arccos βΎ (-1(,)1))) = (π₯ β (-1(,)1) β¦ (-1 /
(ββ(1 β (π₯β2))))) |