| Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvreacos | Structured version Visualization version GIF version | ||
| Description: Real derivative of arccosine. (Contributed by Brendan Leahy, 3-Aug-2017.) (Proof shortened by Brendan Leahy, 18-Dec-2018.) |
| Ref | Expression |
|---|---|
| dvreacos | ⊢ (ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acosf 26812 | . . . . . 6 ⊢ arccos:ℂ⟶ℂ | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (⊤ → arccos:ℂ⟶ℂ) |
| 3 | ioossre 13307 | . . . . . . 7 ⊢ (-1(,)1) ⊆ ℝ | |
| 4 | ax-resscn 11063 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 5 | 3, 4 | sstri 3944 | . . . . . 6 ⊢ (-1(,)1) ⊆ ℂ |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → (-1(,)1) ⊆ ℂ) |
| 7 | 2, 6 | feqresmpt 6891 | . . . 4 ⊢ (⊤ → (arccos ↾ (-1(,)1)) = (𝑥 ∈ (-1(,)1) ↦ (arccos‘𝑥))) |
| 8 | 7 | oveq2d 7362 | . . 3 ⊢ (⊤ → (ℝ D (arccos ↾ (-1(,)1))) = (ℝ D (𝑥 ∈ (-1(,)1) ↦ (arccos‘𝑥)))) |
| 9 | eqid 2731 | . . . 4 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 10 | reelprrecn 11098 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ∈ {ℝ, ℂ}) |
| 12 | 9 | recld2 24731 | . . . . . 6 ⊢ ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) |
| 13 | neg1rr 12111 | . . . . . . . . 9 ⊢ -1 ∈ ℝ | |
| 14 | iocmnfcld 24684 | . . . . . . . . 9 ⊢ (-1 ∈ ℝ → (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,)))) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . . . 8 ⊢ (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))) |
| 16 | 1re 11112 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 17 | icopnfcld 24683 | . . . . . . . . 9 ⊢ (1 ∈ ℝ → (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . . 8 ⊢ (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,))) |
| 19 | uncld 22957 | . . . . . . . 8 ⊢ (((-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))) ∧ (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran (,)))) | |
| 20 | 15, 18, 19 | mp2an 692 | . . . . . . 7 ⊢ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran (,))) |
| 21 | tgioo4 24721 | . . . . . . . 8 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 22 | 21 | fveq2i 6825 | . . . . . . 7 ⊢ (Clsd‘(topGen‘ran (,))) = (Clsd‘((TopOpen‘ℂfld) ↾t ℝ)) |
| 23 | 20, 22 | eleqtri 2829 | . . . . . 6 ⊢ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ)) |
| 24 | restcldr 23090 | . . . . . 6 ⊢ ((ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld))) | |
| 25 | 12, 23, 24 | mp2an 692 | . . . . 5 ⊢ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)) |
| 26 | 9 | cnfldtopon 24698 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 27 | 26 | toponunii 22832 | . . . . . 6 ⊢ ℂ = ∪ (TopOpen‘ℂfld) |
| 28 | 27 | cldopn 22947 | . . . . 5 ⊢ (((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld)) |
| 29 | 25, 28 | mp1i 13 | . . . 4 ⊢ (⊤ → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld)) |
| 30 | incom 4159 | . . . . . 6 ⊢ (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ) | |
| 31 | eqid 2731 | . . . . . . 7 ⊢ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) | |
| 32 | 31 | asindmre 37749 | . . . . . 6 ⊢ ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ) = (-1(,)1) |
| 33 | 30, 32 | eqtri 2754 | . . . . 5 ⊢ (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (-1(,)1) |
| 34 | 33 | a1i 11 | . . . 4 ⊢ (⊤ → (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (-1(,)1)) |
| 35 | eldifi 4081 | . . . . . 6 ⊢ (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → 𝑥 ∈ ℂ) | |
| 36 | acoscl 26813 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (arccos‘𝑥) ∈ ℂ) | |
| 37 | 35, 36 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → (arccos‘𝑥) ∈ ℂ) |
| 38 | 37 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) → (arccos‘𝑥) ∈ ℂ) |
| 39 | ovexd 7381 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) → (-1 / (√‘(1 − (𝑥↑2)))) ∈ V) | |
| 40 | difssd 4087 | . . . . . . 7 ⊢ (⊤ → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⊆ ℂ) | |
| 41 | 2, 40 | feqresmpt 6891 | . . . . . 6 ⊢ (⊤ → (arccos ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arccos‘𝑥))) |
| 42 | 41 | oveq2d 7362 | . . . . 5 ⊢ (⊤ → (ℂ D (arccos ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))))) = (ℂ D (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arccos‘𝑥)))) |
| 43 | 31 | dvacos 37751 | . . . . 5 ⊢ (ℂ D (arccos ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (-1 / (√‘(1 − (𝑥↑2))))) |
| 44 | 42, 43 | eqtr3di 2781 | . . . 4 ⊢ (⊤ → (ℂ D (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arccos‘𝑥))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (-1 / (√‘(1 − (𝑥↑2)))))) |
| 45 | 9, 11, 29, 34, 38, 39, 44 | dvmptres3 25888 | . . 3 ⊢ (⊤ → (ℝ D (𝑥 ∈ (-1(,)1) ↦ (arccos‘𝑥))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2)))))) |
| 46 | 8, 45 | eqtrd 2766 | . 2 ⊢ (⊤ → (ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2)))))) |
| 47 | 46 | mptru 1548 | 1 ⊢ (ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3899 ∪ cun 3900 ∩ cin 3901 ⊆ wss 3902 {cpr 4578 ↦ cmpt 5172 ran crn 5617 ↾ cres 5618 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 1c1 11007 +∞cpnf 11143 -∞cmnf 11144 − cmin 11344 -cneg 11345 / cdiv 11774 2c2 12180 (,)cioo 13245 (,]cioc 13246 [,)cico 13247 ↑cexp 13968 √csqrt 15140 ↾t crest 17324 TopOpenctopn 17325 topGenctg 17341 ℂfldccnfld 21292 Clsdccld 22932 D cdv 25792 arccoscacos 26801 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-tan 15978 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19230 df-cmn 19695 df-psmet 21284 df-xmet 21285 df-met 21286 df-bl 21287 df-mopn 21288 df-fbas 21289 df-fg 21290 df-cnfld 21293 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lp 23052 df-perf 23053 df-cn 23143 df-cnp 23144 df-haus 23231 df-cmp 23303 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 df-limc 25795 df-dv 25796 df-log 26493 df-cxp 26494 df-asin 26803 df-acos 26804 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |