Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvreacos Structured version   Visualization version   GIF version

Theorem dvreacos 35143
Description: Real derivative of arccosine. (Contributed by Brendan Leahy, 3-Aug-2017.) (Proof shortened by Brendan Leahy, 18-Dec-2018.)
Assertion
Ref Expression
dvreacos (ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2)))))

Proof of Theorem dvreacos
StepHypRef Expression
1 acosf 25464 . . . . . 6 arccos:ℂ⟶ℂ
21a1i 11 . . . . 5 (⊤ → arccos:ℂ⟶ℂ)
3 ioossre 12790 . . . . . . 7 (-1(,)1) ⊆ ℝ
4 ax-resscn 10587 . . . . . . 7 ℝ ⊆ ℂ
53, 4sstri 3927 . . . . . 6 (-1(,)1) ⊆ ℂ
65a1i 11 . . . . 5 (⊤ → (-1(,)1) ⊆ ℂ)
72, 6feqresmpt 6713 . . . 4 (⊤ → (arccos ↾ (-1(,)1)) = (𝑥 ∈ (-1(,)1) ↦ (arccos‘𝑥)))
87oveq2d 7155 . . 3 (⊤ → (ℝ D (arccos ↾ (-1(,)1))) = (ℝ D (𝑥 ∈ (-1(,)1) ↦ (arccos‘𝑥))))
9 eqid 2801 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10 reelprrecn 10622 . . . . 5 ℝ ∈ {ℝ, ℂ}
1110a1i 11 . . . 4 (⊤ → ℝ ∈ {ℝ, ℂ})
129recld2 23423 . . . . . 6 ℝ ∈ (Clsd‘(TopOpen‘ℂfld))
13 neg1rr 11744 . . . . . . . . 9 -1 ∈ ℝ
14 iocmnfcld 23378 . . . . . . . . 9 (-1 ∈ ℝ → (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))))
1513, 14ax-mp 5 . . . . . . . 8 (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,)))
16 1re 10634 . . . . . . . . 9 1 ∈ ℝ
17 icopnfcld 23377 . . . . . . . . 9 (1 ∈ ℝ → (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
1816, 17ax-mp 5 . . . . . . . 8 (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))
19 uncld 21650 . . . . . . . 8 (((-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))) ∧ (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran (,))))
2015, 18, 19mp2an 691 . . . . . . 7 ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran (,)))
219tgioo2 23412 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2221fveq2i 6652 . . . . . . 7 (Clsd‘(topGen‘ran (,))) = (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))
2320, 22eleqtri 2891 . . . . . 6 ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))
24 restcldr 21783 . . . . . 6 ((ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)))
2512, 23, 24mp2an 691 . . . . 5 ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld))
269cnfldtopon 23392 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2726toponunii 21525 . . . . . 6 ℂ = (TopOpen‘ℂfld)
2827cldopn 21640 . . . . 5 (((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld))
2925, 28mp1i 13 . . . 4 (⊤ → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld))
30 incom 4131 . . . . . 6 (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ)
31 eqid 2801 . . . . . . 7 (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
3231asindmre 35139 . . . . . 6 ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ) = (-1(,)1)
3330, 32eqtri 2824 . . . . 5 (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (-1(,)1)
3433a1i 11 . . . 4 (⊤ → (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (-1(,)1))
35 eldifi 4057 . . . . . 6 (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → 𝑥 ∈ ℂ)
36 acoscl 25465 . . . . . 6 (𝑥 ∈ ℂ → (arccos‘𝑥) ∈ ℂ)
3735, 36syl 17 . . . . 5 (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → (arccos‘𝑥) ∈ ℂ)
3837adantl 485 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) → (arccos‘𝑥) ∈ ℂ)
39 ovexd 7174 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) → (-1 / (√‘(1 − (𝑥↑2)))) ∈ V)
4031dvacos 35141 . . . . 5 (ℂ D (arccos ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (-1 / (√‘(1 − (𝑥↑2)))))
41 difssd 4063 . . . . . . 7 (⊤ → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⊆ ℂ)
422, 41feqresmpt 6713 . . . . . 6 (⊤ → (arccos ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arccos‘𝑥)))
4342oveq2d 7155 . . . . 5 (⊤ → (ℂ D (arccos ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))))) = (ℂ D (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arccos‘𝑥))))
4440, 43syl5reqr 2851 . . . 4 (⊤ → (ℂ D (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arccos‘𝑥))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (-1 / (√‘(1 − (𝑥↑2))))))
459, 11, 29, 34, 38, 39, 44dvmptres3 24563 . . 3 (⊤ → (ℝ D (𝑥 ∈ (-1(,)1) ↦ (arccos‘𝑥))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2))))))
468, 45eqtrd 2836 . 2 (⊤ → (ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2))))))
4746mptru 1545 1 (ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wtru 1539  wcel 2112  Vcvv 3444  cdif 3881  cun 3882  cin 3883  wss 3884  {cpr 4530  cmpt 5113  ran crn 5524  cres 5525  wf 6324  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  1c1 10531  +∞cpnf 10665  -∞cmnf 10666  cmin 10863  -cneg 10864   / cdiv 11290  2c2 11684  (,)cioo 12730  (,]cioc 12731  [,)cico 12732  cexp 13429  csqrt 14588  t crest 16690  TopOpenctopn 16691  topGenctg 16707  fldccnfld 20095  Clsdccld 21625   D cdv 24470  arccoscacos 25453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-shft 14422  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-limsup 14824  df-clim 14841  df-rlim 14842  df-sum 15039  df-ef 15417  df-sin 15419  df-cos 15420  df-tan 15421  df-pi 15422  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-xrs 16771  df-qtop 16776  df-imas 16777  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-ntr 21629  df-cls 21630  df-nei 21707  df-lp 21745  df-perf 21746  df-cn 21836  df-cnp 21837  df-haus 21924  df-cmp 21996  df-tx 22171  df-hmeo 22364  df-fil 22455  df-fm 22547  df-flim 22548  df-flf 22549  df-xms 22931  df-ms 22932  df-tms 22933  df-cncf 23487  df-limc 24473  df-dv 24474  df-log 25152  df-cxp 25153  df-asin 25455  df-acos 25456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator