Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvreacos | Structured version Visualization version GIF version |
Description: Real derivative of arccosine. (Contributed by Brendan Leahy, 3-Aug-2017.) (Proof shortened by Brendan Leahy, 18-Dec-2018.) |
Ref | Expression |
---|---|
dvreacos | ⊢ (ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acosf 25929 | . . . . . 6 ⊢ arccos:ℂ⟶ℂ | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (⊤ → arccos:ℂ⟶ℂ) |
3 | ioossre 13069 | . . . . . . 7 ⊢ (-1(,)1) ⊆ ℝ | |
4 | ax-resscn 10859 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
5 | 3, 4 | sstri 3926 | . . . . . 6 ⊢ (-1(,)1) ⊆ ℂ |
6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → (-1(,)1) ⊆ ℂ) |
7 | 2, 6 | feqresmpt 6820 | . . . 4 ⊢ (⊤ → (arccos ↾ (-1(,)1)) = (𝑥 ∈ (-1(,)1) ↦ (arccos‘𝑥))) |
8 | 7 | oveq2d 7271 | . . 3 ⊢ (⊤ → (ℝ D (arccos ↾ (-1(,)1))) = (ℝ D (𝑥 ∈ (-1(,)1) ↦ (arccos‘𝑥)))) |
9 | eqid 2738 | . . . 4 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
10 | reelprrecn 10894 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
11 | 10 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ∈ {ℝ, ℂ}) |
12 | 9 | recld2 23883 | . . . . . 6 ⊢ ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) |
13 | neg1rr 12018 | . . . . . . . . 9 ⊢ -1 ∈ ℝ | |
14 | iocmnfcld 23838 | . . . . . . . . 9 ⊢ (-1 ∈ ℝ → (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,)))) | |
15 | 13, 14 | ax-mp 5 | . . . . . . . 8 ⊢ (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))) |
16 | 1re 10906 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
17 | icopnfcld 23837 | . . . . . . . . 9 ⊢ (1 ∈ ℝ → (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) | |
18 | 16, 17 | ax-mp 5 | . . . . . . . 8 ⊢ (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,))) |
19 | uncld 22100 | . . . . . . . 8 ⊢ (((-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))) ∧ (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran (,)))) | |
20 | 15, 18, 19 | mp2an 688 | . . . . . . 7 ⊢ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran (,))) |
21 | 9 | tgioo2 23872 | . . . . . . . 8 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
22 | 21 | fveq2i 6759 | . . . . . . 7 ⊢ (Clsd‘(topGen‘ran (,))) = (Clsd‘((TopOpen‘ℂfld) ↾t ℝ)) |
23 | 20, 22 | eleqtri 2837 | . . . . . 6 ⊢ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ)) |
24 | restcldr 22233 | . . . . . 6 ⊢ ((ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld))) | |
25 | 12, 23, 24 | mp2an 688 | . . . . 5 ⊢ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)) |
26 | 9 | cnfldtopon 23852 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
27 | 26 | toponunii 21973 | . . . . . 6 ⊢ ℂ = ∪ (TopOpen‘ℂfld) |
28 | 27 | cldopn 22090 | . . . . 5 ⊢ (((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld)) |
29 | 25, 28 | mp1i 13 | . . . 4 ⊢ (⊤ → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld)) |
30 | incom 4131 | . . . . . 6 ⊢ (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ) | |
31 | eqid 2738 | . . . . . . 7 ⊢ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) | |
32 | 31 | asindmre 35787 | . . . . . 6 ⊢ ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ) = (-1(,)1) |
33 | 30, 32 | eqtri 2766 | . . . . 5 ⊢ (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (-1(,)1) |
34 | 33 | a1i 11 | . . . 4 ⊢ (⊤ → (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (-1(,)1)) |
35 | eldifi 4057 | . . . . . 6 ⊢ (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → 𝑥 ∈ ℂ) | |
36 | acoscl 25930 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (arccos‘𝑥) ∈ ℂ) | |
37 | 35, 36 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → (arccos‘𝑥) ∈ ℂ) |
38 | 37 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) → (arccos‘𝑥) ∈ ℂ) |
39 | ovexd 7290 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) → (-1 / (√‘(1 − (𝑥↑2)))) ∈ V) | |
40 | difssd 4063 | . . . . . . 7 ⊢ (⊤ → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⊆ ℂ) | |
41 | 2, 40 | feqresmpt 6820 | . . . . . 6 ⊢ (⊤ → (arccos ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arccos‘𝑥))) |
42 | 41 | oveq2d 7271 | . . . . 5 ⊢ (⊤ → (ℂ D (arccos ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))))) = (ℂ D (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arccos‘𝑥)))) |
43 | 31 | dvacos 35789 | . . . . 5 ⊢ (ℂ D (arccos ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (-1 / (√‘(1 − (𝑥↑2))))) |
44 | 42, 43 | eqtr3di 2794 | . . . 4 ⊢ (⊤ → (ℂ D (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arccos‘𝑥))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (-1 / (√‘(1 − (𝑥↑2)))))) |
45 | 9, 11, 29, 34, 38, 39, 44 | dvmptres3 25025 | . . 3 ⊢ (⊤ → (ℝ D (𝑥 ∈ (-1(,)1) ↦ (arccos‘𝑥))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2)))))) |
46 | 8, 45 | eqtrd 2778 | . 2 ⊢ (⊤ → (ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2)))))) |
47 | 46 | mptru 1546 | 1 ⊢ (ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2))))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 ∩ cin 3882 ⊆ wss 3883 {cpr 4560 ↦ cmpt 5153 ran crn 5581 ↾ cres 5582 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 1c1 10803 +∞cpnf 10937 -∞cmnf 10938 − cmin 11135 -cneg 11136 / cdiv 11562 2c2 11958 (,)cioo 13008 (,]cioc 13009 [,)cico 13010 ↑cexp 13710 √csqrt 14872 ↾t crest 17048 TopOpenctopn 17049 topGenctg 17065 ℂfldccnfld 20510 Clsdccld 22075 D cdv 24932 arccoscacos 25918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-tan 15709 df-pi 15710 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-cmp 22446 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-log 25617 df-cxp 25618 df-asin 25920 df-acos 25921 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |