Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvreacos Structured version   Visualization version   GIF version

Theorem dvreacos 35864
Description: Real derivative of arccosine. (Contributed by Brendan Leahy, 3-Aug-2017.) (Proof shortened by Brendan Leahy, 18-Dec-2018.)
Assertion
Ref Expression
dvreacos (ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2)))))

Proof of Theorem dvreacos
StepHypRef Expression
1 acosf 26024 . . . . . 6 arccos:ℂ⟶ℂ
21a1i 11 . . . . 5 (⊤ → arccos:ℂ⟶ℂ)
3 ioossre 13140 . . . . . . 7 (-1(,)1) ⊆ ℝ
4 ax-resscn 10928 . . . . . . 7 ℝ ⊆ ℂ
53, 4sstri 3930 . . . . . 6 (-1(,)1) ⊆ ℂ
65a1i 11 . . . . 5 (⊤ → (-1(,)1) ⊆ ℂ)
72, 6feqresmpt 6838 . . . 4 (⊤ → (arccos ↾ (-1(,)1)) = (𝑥 ∈ (-1(,)1) ↦ (arccos‘𝑥)))
87oveq2d 7291 . . 3 (⊤ → (ℝ D (arccos ↾ (-1(,)1))) = (ℝ D (𝑥 ∈ (-1(,)1) ↦ (arccos‘𝑥))))
9 eqid 2738 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10 reelprrecn 10963 . . . . 5 ℝ ∈ {ℝ, ℂ}
1110a1i 11 . . . 4 (⊤ → ℝ ∈ {ℝ, ℂ})
129recld2 23977 . . . . . 6 ℝ ∈ (Clsd‘(TopOpen‘ℂfld))
13 neg1rr 12088 . . . . . . . . 9 -1 ∈ ℝ
14 iocmnfcld 23932 . . . . . . . . 9 (-1 ∈ ℝ → (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))))
1513, 14ax-mp 5 . . . . . . . 8 (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,)))
16 1re 10975 . . . . . . . . 9 1 ∈ ℝ
17 icopnfcld 23931 . . . . . . . . 9 (1 ∈ ℝ → (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
1816, 17ax-mp 5 . . . . . . . 8 (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))
19 uncld 22192 . . . . . . . 8 (((-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))) ∧ (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran (,))))
2015, 18, 19mp2an 689 . . . . . . 7 ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran (,)))
219tgioo2 23966 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2221fveq2i 6777 . . . . . . 7 (Clsd‘(topGen‘ran (,))) = (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))
2320, 22eleqtri 2837 . . . . . 6 ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))
24 restcldr 22325 . . . . . 6 ((ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)))
2512, 23, 24mp2an 689 . . . . 5 ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld))
269cnfldtopon 23946 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2726toponunii 22065 . . . . . 6 ℂ = (TopOpen‘ℂfld)
2827cldopn 22182 . . . . 5 (((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld))
2925, 28mp1i 13 . . . 4 (⊤ → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld))
30 incom 4135 . . . . . 6 (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ)
31 eqid 2738 . . . . . . 7 (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
3231asindmre 35860 . . . . . 6 ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ) = (-1(,)1)
3330, 32eqtri 2766 . . . . 5 (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (-1(,)1)
3433a1i 11 . . . 4 (⊤ → (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (-1(,)1))
35 eldifi 4061 . . . . . 6 (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → 𝑥 ∈ ℂ)
36 acoscl 26025 . . . . . 6 (𝑥 ∈ ℂ → (arccos‘𝑥) ∈ ℂ)
3735, 36syl 17 . . . . 5 (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → (arccos‘𝑥) ∈ ℂ)
3837adantl 482 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) → (arccos‘𝑥) ∈ ℂ)
39 ovexd 7310 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) → (-1 / (√‘(1 − (𝑥↑2)))) ∈ V)
40 difssd 4067 . . . . . . 7 (⊤ → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⊆ ℂ)
412, 40feqresmpt 6838 . . . . . 6 (⊤ → (arccos ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arccos‘𝑥)))
4241oveq2d 7291 . . . . 5 (⊤ → (ℂ D (arccos ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))))) = (ℂ D (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arccos‘𝑥))))
4331dvacos 35862 . . . . 5 (ℂ D (arccos ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (-1 / (√‘(1 − (𝑥↑2)))))
4442, 43eqtr3di 2793 . . . 4 (⊤ → (ℂ D (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arccos‘𝑥))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (-1 / (√‘(1 − (𝑥↑2))))))
459, 11, 29, 34, 38, 39, 44dvmptres3 25120 . . 3 (⊤ → (ℝ D (𝑥 ∈ (-1(,)1) ↦ (arccos‘𝑥))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2))))))
468, 45eqtrd 2778 . 2 (⊤ → (ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2))))))
4746mptru 1546 1 (ℝ D (arccos ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (-1 / (√‘(1 − (𝑥↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wtru 1540  wcel 2106  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  {cpr 4563  cmpt 5157  ran crn 5590  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  1c1 10872  +∞cpnf 11006  -∞cmnf 11007  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  (,)cioo 13079  (,]cioc 13080  [,)cico 13081  cexp 13782  csqrt 14944  t crest 17131  TopOpenctopn 17132  topGenctg 17148  fldccnfld 20597  Clsdccld 22167   D cdv 25027  arccoscacos 26013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-tan 15781  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-cxp 25713  df-asin 26015  df-acos 26016
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator