| Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvreasin | Structured version Visualization version GIF version | ||
| Description: Real derivative of arcsine. (Contributed by Brendan Leahy, 3-Aug-2017.) (Proof shortened by Brendan Leahy, 18-Dec-2018.) |
| Ref | Expression |
|---|---|
| dvreasin | ⊢ (ℝ D (arcsin ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑥↑2))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asinf 26789 | . . . . . 6 ⊢ arcsin:ℂ⟶ℂ | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (⊤ → arcsin:ℂ⟶ℂ) |
| 3 | ioossre 13375 | . . . . . . 7 ⊢ (-1(,)1) ⊆ ℝ | |
| 4 | ax-resscn 11132 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 5 | 3, 4 | sstri 3959 | . . . . . 6 ⊢ (-1(,)1) ⊆ ℂ |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → (-1(,)1) ⊆ ℂ) |
| 7 | 2, 6 | feqresmpt 6933 | . . . 4 ⊢ (⊤ → (arcsin ↾ (-1(,)1)) = (𝑥 ∈ (-1(,)1) ↦ (arcsin‘𝑥))) |
| 8 | 7 | oveq2d 7406 | . . 3 ⊢ (⊤ → (ℝ D (arcsin ↾ (-1(,)1))) = (ℝ D (𝑥 ∈ (-1(,)1) ↦ (arcsin‘𝑥)))) |
| 9 | eqid 2730 | . . . 4 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 10 | reelprrecn 11167 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ∈ {ℝ, ℂ}) |
| 12 | 9 | recld2 24710 | . . . . . 6 ⊢ ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) |
| 13 | neg1rr 12179 | . . . . . . . . 9 ⊢ -1 ∈ ℝ | |
| 14 | iocmnfcld 24663 | . . . . . . . . 9 ⊢ (-1 ∈ ℝ → (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,)))) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . . . 8 ⊢ (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))) |
| 16 | 1re 11181 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 17 | icopnfcld 24662 | . . . . . . . . 9 ⊢ (1 ∈ ℝ → (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . . 8 ⊢ (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,))) |
| 19 | uncld 22935 | . . . . . . . 8 ⊢ (((-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))) ∧ (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran (,)))) | |
| 20 | 15, 18, 19 | mp2an 692 | . . . . . . 7 ⊢ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran (,))) |
| 21 | tgioo4 24700 | . . . . . . . 8 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 22 | 21 | fveq2i 6864 | . . . . . . 7 ⊢ (Clsd‘(topGen‘ran (,))) = (Clsd‘((TopOpen‘ℂfld) ↾t ℝ)) |
| 23 | 20, 22 | eleqtri 2827 | . . . . . 6 ⊢ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ)) |
| 24 | restcldr 23068 | . . . . . 6 ⊢ ((ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld))) | |
| 25 | 12, 23, 24 | mp2an 692 | . . . . 5 ⊢ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)) |
| 26 | 9 | cnfldtopon 24677 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 27 | 26 | toponunii 22810 | . . . . . 6 ⊢ ℂ = ∪ (TopOpen‘ℂfld) |
| 28 | 27 | cldopn 22925 | . . . . 5 ⊢ (((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld)) |
| 29 | 25, 28 | mp1i 13 | . . . 4 ⊢ (⊤ → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld)) |
| 30 | incom 4175 | . . . . . 6 ⊢ (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ) | |
| 31 | eqid 2730 | . . . . . . 7 ⊢ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) | |
| 32 | 31 | asindmre 37704 | . . . . . 6 ⊢ ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ) = (-1(,)1) |
| 33 | 30, 32 | eqtri 2753 | . . . . 5 ⊢ (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (-1(,)1) |
| 34 | 33 | a1i 11 | . . . 4 ⊢ (⊤ → (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (-1(,)1)) |
| 35 | eldifi 4097 | . . . . . 6 ⊢ (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → 𝑥 ∈ ℂ) | |
| 36 | asincl 26790 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (arcsin‘𝑥) ∈ ℂ) | |
| 37 | 35, 36 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → (arcsin‘𝑥) ∈ ℂ) |
| 38 | 37 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) → (arcsin‘𝑥) ∈ ℂ) |
| 39 | ovexd 7425 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) → (1 / (√‘(1 − (𝑥↑2)))) ∈ V) | |
| 40 | difssd 4103 | . . . . . . 7 ⊢ (⊤ → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⊆ ℂ) | |
| 41 | 2, 40 | feqresmpt 6933 | . . . . . 6 ⊢ (⊤ → (arcsin ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arcsin‘𝑥))) |
| 42 | 41 | oveq2d 7406 | . . . . 5 ⊢ (⊤ → (ℂ D (arcsin ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))))) = (ℂ D (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arcsin‘𝑥)))) |
| 43 | 31 | dvasin 37705 | . . . . 5 ⊢ (ℂ D (arcsin ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (1 / (√‘(1 − (𝑥↑2))))) |
| 44 | 42, 43 | eqtr3di 2780 | . . . 4 ⊢ (⊤ → (ℂ D (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arcsin‘𝑥))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (1 / (√‘(1 − (𝑥↑2)))))) |
| 45 | 9, 11, 29, 34, 38, 39, 44 | dvmptres3 25867 | . . 3 ⊢ (⊤ → (ℝ D (𝑥 ∈ (-1(,)1) ↦ (arcsin‘𝑥))) = (𝑥 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑥↑2)))))) |
| 46 | 8, 45 | eqtrd 2765 | . 2 ⊢ (⊤ → (ℝ D (arcsin ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑥↑2)))))) |
| 47 | 46 | mptru 1547 | 1 ⊢ (ℝ D (arcsin ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑥↑2))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 ∪ cun 3915 ∩ cin 3916 ⊆ wss 3917 {cpr 4594 ↦ cmpt 5191 ran crn 5642 ↾ cres 5643 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 1c1 11076 +∞cpnf 11212 -∞cmnf 11213 − cmin 11412 -cneg 11413 / cdiv 11842 2c2 12248 (,)cioo 13313 (,]cioc 13314 [,)cico 13315 ↑cexp 14033 √csqrt 15206 ↾t crest 17390 TopOpenctopn 17391 topGenctg 17407 ℂfldccnfld 21271 Clsdccld 22910 D cdv 25771 arcsincasin 26779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-tan 16044 df-pi 16045 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cn 23121 df-cnp 23122 df-haus 23209 df-cmp 23281 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 df-limc 25774 df-dv 25775 df-log 26472 df-cxp 26473 df-asin 26782 |
| This theorem is referenced by: areacirclem1 37709 |
| Copyright terms: Public domain | W3C validator |