Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvreasin | Structured version Visualization version GIF version |
Description: Real derivative of arcsine. (Contributed by Brendan Leahy, 3-Aug-2017.) (Proof shortened by Brendan Leahy, 18-Dec-2018.) |
Ref | Expression |
---|---|
dvreasin | ⊢ (ℝ D (arcsin ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑥↑2))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asinf 25755 | . . . . . 6 ⊢ arcsin:ℂ⟶ℂ | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (⊤ → arcsin:ℂ⟶ℂ) |
3 | ioossre 12996 | . . . . . . 7 ⊢ (-1(,)1) ⊆ ℝ | |
4 | ax-resscn 10786 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
5 | 3, 4 | sstri 3910 | . . . . . 6 ⊢ (-1(,)1) ⊆ ℂ |
6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → (-1(,)1) ⊆ ℂ) |
7 | 2, 6 | feqresmpt 6781 | . . . 4 ⊢ (⊤ → (arcsin ↾ (-1(,)1)) = (𝑥 ∈ (-1(,)1) ↦ (arcsin‘𝑥))) |
8 | 7 | oveq2d 7229 | . . 3 ⊢ (⊤ → (ℝ D (arcsin ↾ (-1(,)1))) = (ℝ D (𝑥 ∈ (-1(,)1) ↦ (arcsin‘𝑥)))) |
9 | eqid 2737 | . . . 4 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
10 | reelprrecn 10821 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
11 | 10 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ∈ {ℝ, ℂ}) |
12 | 9 | recld2 23711 | . . . . . 6 ⊢ ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) |
13 | neg1rr 11945 | . . . . . . . . 9 ⊢ -1 ∈ ℝ | |
14 | iocmnfcld 23666 | . . . . . . . . 9 ⊢ (-1 ∈ ℝ → (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,)))) | |
15 | 13, 14 | ax-mp 5 | . . . . . . . 8 ⊢ (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))) |
16 | 1re 10833 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
17 | icopnfcld 23665 | . . . . . . . . 9 ⊢ (1 ∈ ℝ → (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) | |
18 | 16, 17 | ax-mp 5 | . . . . . . . 8 ⊢ (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,))) |
19 | uncld 21938 | . . . . . . . 8 ⊢ (((-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))) ∧ (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran (,)))) | |
20 | 15, 18, 19 | mp2an 692 | . . . . . . 7 ⊢ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran (,))) |
21 | 9 | tgioo2 23700 | . . . . . . . 8 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
22 | 21 | fveq2i 6720 | . . . . . . 7 ⊢ (Clsd‘(topGen‘ran (,))) = (Clsd‘((TopOpen‘ℂfld) ↾t ℝ)) |
23 | 20, 22 | eleqtri 2836 | . . . . . 6 ⊢ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ)) |
24 | restcldr 22071 | . . . . . 6 ⊢ ((ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld))) | |
25 | 12, 23, 24 | mp2an 692 | . . . . 5 ⊢ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)) |
26 | 9 | cnfldtopon 23680 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
27 | 26 | toponunii 21813 | . . . . . 6 ⊢ ℂ = ∪ (TopOpen‘ℂfld) |
28 | 27 | cldopn 21928 | . . . . 5 ⊢ (((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld)) |
29 | 25, 28 | mp1i 13 | . . . 4 ⊢ (⊤ → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld)) |
30 | incom 4115 | . . . . . 6 ⊢ (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ) | |
31 | eqid 2737 | . . . . . . 7 ⊢ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) | |
32 | 31 | asindmre 35597 | . . . . . 6 ⊢ ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ) = (-1(,)1) |
33 | 30, 32 | eqtri 2765 | . . . . 5 ⊢ (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (-1(,)1) |
34 | 33 | a1i 11 | . . . 4 ⊢ (⊤ → (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (-1(,)1)) |
35 | eldifi 4041 | . . . . . 6 ⊢ (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → 𝑥 ∈ ℂ) | |
36 | asincl 25756 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (arcsin‘𝑥) ∈ ℂ) | |
37 | 35, 36 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → (arcsin‘𝑥) ∈ ℂ) |
38 | 37 | adantl 485 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) → (arcsin‘𝑥) ∈ ℂ) |
39 | ovexd 7248 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) → (1 / (√‘(1 − (𝑥↑2)))) ∈ V) | |
40 | difssd 4047 | . . . . . . 7 ⊢ (⊤ → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⊆ ℂ) | |
41 | 2, 40 | feqresmpt 6781 | . . . . . 6 ⊢ (⊤ → (arcsin ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arcsin‘𝑥))) |
42 | 41 | oveq2d 7229 | . . . . 5 ⊢ (⊤ → (ℂ D (arcsin ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))))) = (ℂ D (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arcsin‘𝑥)))) |
43 | 31 | dvasin 35598 | . . . . 5 ⊢ (ℂ D (arcsin ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (1 / (√‘(1 − (𝑥↑2))))) |
44 | 42, 43 | eqtr3di 2793 | . . . 4 ⊢ (⊤ → (ℂ D (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arcsin‘𝑥))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (1 / (√‘(1 − (𝑥↑2)))))) |
45 | 9, 11, 29, 34, 38, 39, 44 | dvmptres3 24853 | . . 3 ⊢ (⊤ → (ℝ D (𝑥 ∈ (-1(,)1) ↦ (arcsin‘𝑥))) = (𝑥 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑥↑2)))))) |
46 | 8, 45 | eqtrd 2777 | . 2 ⊢ (⊤ → (ℝ D (arcsin ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑥↑2)))))) |
47 | 46 | mptru 1550 | 1 ⊢ (ℝ D (arcsin ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑥↑2))))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1543 ⊤wtru 1544 ∈ wcel 2110 Vcvv 3408 ∖ cdif 3863 ∪ cun 3864 ∩ cin 3865 ⊆ wss 3866 {cpr 4543 ↦ cmpt 5135 ran crn 5552 ↾ cres 5553 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 ℝcr 10728 1c1 10730 +∞cpnf 10864 -∞cmnf 10865 − cmin 11062 -cneg 11063 / cdiv 11489 2c2 11885 (,)cioo 12935 (,]cioc 12936 [,)cico 12937 ↑cexp 13635 √csqrt 14796 ↾t crest 16925 TopOpenctopn 16926 topGenctg 16942 ℂfldccnfld 20363 Clsdccld 21913 D cdv 24760 arcsincasin 25745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 ax-addf 10808 ax-mulf 10809 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-er 8391 df-map 8510 df-pm 8511 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-fi 9027 df-sup 9058 df-inf 9059 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-q 12545 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-ioo 12939 df-ioc 12940 df-ico 12941 df-icc 12942 df-fz 13096 df-fzo 13239 df-fl 13367 df-mod 13443 df-seq 13575 df-exp 13636 df-fac 13840 df-bc 13869 df-hash 13897 df-shft 14630 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-limsup 15032 df-clim 15049 df-rlim 15050 df-sum 15250 df-ef 15629 df-sin 15631 df-cos 15632 df-tan 15633 df-pi 15634 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-hom 16826 df-cco 16827 df-rest 16927 df-topn 16928 df-0g 16946 df-gsum 16947 df-topgen 16948 df-pt 16949 df-prds 16952 df-xrs 17007 df-qtop 17012 df-imas 17013 df-xps 17015 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-mulg 18489 df-cntz 18711 df-cmn 19172 df-psmet 20355 df-xmet 20356 df-met 20357 df-bl 20358 df-mopn 20359 df-fbas 20360 df-fg 20361 df-cnfld 20364 df-top 21791 df-topon 21808 df-topsp 21830 df-bases 21843 df-cld 21916 df-ntr 21917 df-cls 21918 df-nei 21995 df-lp 22033 df-perf 22034 df-cn 22124 df-cnp 22125 df-haus 22212 df-cmp 22284 df-tx 22459 df-hmeo 22652 df-fil 22743 df-fm 22835 df-flim 22836 df-flf 22837 df-xms 23218 df-ms 23219 df-tms 23220 df-cncf 23775 df-limc 24763 df-dv 24764 df-log 25445 df-cxp 25446 df-asin 25748 |
This theorem is referenced by: areacirclem1 35602 |
Copyright terms: Public domain | W3C validator |