Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvreasin Structured version   Visualization version   GIF version

Theorem dvreasin 33944
Description: Real derivative of arcsine. (Contributed by Brendan Leahy, 3-Aug-2017.) (Proof shortened by Brendan Leahy, 18-Dec-2018.)
Assertion
Ref Expression
dvreasin (ℝ D (arcsin ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑥↑2)))))

Proof of Theorem dvreasin
StepHypRef Expression
1 asinf 24906 . . . . . 6 arcsin:ℂ⟶ℂ
21a1i 11 . . . . 5 (⊤ → arcsin:ℂ⟶ℂ)
3 ioossre 12444 . . . . . . 7 (-1(,)1) ⊆ ℝ
4 ax-resscn 10250 . . . . . . 7 ℝ ⊆ ℂ
53, 4sstri 3772 . . . . . 6 (-1(,)1) ⊆ ℂ
65a1i 11 . . . . 5 (⊤ → (-1(,)1) ⊆ ℂ)
72, 6feqresmpt 6443 . . . 4 (⊤ → (arcsin ↾ (-1(,)1)) = (𝑥 ∈ (-1(,)1) ↦ (arcsin‘𝑥)))
87oveq2d 6862 . . 3 (⊤ → (ℝ D (arcsin ↾ (-1(,)1))) = (ℝ D (𝑥 ∈ (-1(,)1) ↦ (arcsin‘𝑥))))
9 eqid 2765 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10 reelprrecn 10285 . . . . 5 ℝ ∈ {ℝ, ℂ}
1110a1i 11 . . . 4 (⊤ → ℝ ∈ {ℝ, ℂ})
129recld2 22912 . . . . . 6 ℝ ∈ (Clsd‘(TopOpen‘ℂfld))
13 neg1rr 11399 . . . . . . . . 9 -1 ∈ ℝ
14 iocmnfcld 22867 . . . . . . . . 9 (-1 ∈ ℝ → (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))))
1513, 14ax-mp 5 . . . . . . . 8 (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,)))
16 1re 10297 . . . . . . . . 9 1 ∈ ℝ
17 icopnfcld 22866 . . . . . . . . 9 (1 ∈ ℝ → (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
1816, 17ax-mp 5 . . . . . . . 8 (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))
19 uncld 21141 . . . . . . . 8 (((-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))) ∧ (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran (,))))
2015, 18, 19mp2an 683 . . . . . . 7 ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran (,)))
219tgioo2 22901 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2221fveq2i 6382 . . . . . . 7 (Clsd‘(topGen‘ran (,))) = (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))
2320, 22eleqtri 2842 . . . . . 6 ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))
24 restcldr 21274 . . . . . 6 ((ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)))
2512, 23, 24mp2an 683 . . . . 5 ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld))
269cnfldtopon 22881 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2726toponunii 21016 . . . . . 6 ℂ = (TopOpen‘ℂfld)
2827cldopn 21131 . . . . 5 (((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld))
2925, 28mp1i 13 . . . 4 (⊤ → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld))
30 incom 3969 . . . . . 6 (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ)
31 eqid 2765 . . . . . . 7 (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
3231asindmre 33941 . . . . . 6 ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ) = (-1(,)1)
3330, 32eqtri 2787 . . . . 5 (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (-1(,)1)
3433a1i 11 . . . 4 (⊤ → (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (-1(,)1))
35 eldifi 3896 . . . . . 6 (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → 𝑥 ∈ ℂ)
36 asincl 24907 . . . . . 6 (𝑥 ∈ ℂ → (arcsin‘𝑥) ∈ ℂ)
3735, 36syl 17 . . . . 5 (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → (arcsin‘𝑥) ∈ ℂ)
3837adantl 473 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) → (arcsin‘𝑥) ∈ ℂ)
39 ovexd 6880 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) → (1 / (√‘(1 − (𝑥↑2)))) ∈ V)
4031dvasin 33942 . . . . 5 (ℂ D (arcsin ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (1 / (√‘(1 − (𝑥↑2)))))
41 difssd 3902 . . . . . . 7 (⊤ → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⊆ ℂ)
422, 41feqresmpt 6443 . . . . . 6 (⊤ → (arcsin ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arcsin‘𝑥)))
4342oveq2d 6862 . . . . 5 (⊤ → (ℂ D (arcsin ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))))) = (ℂ D (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arcsin‘𝑥))))
4440, 43syl5reqr 2814 . . . 4 (⊤ → (ℂ D (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arcsin‘𝑥))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (1 / (√‘(1 − (𝑥↑2))))))
459, 11, 29, 34, 38, 39, 44dvmptres3 24026 . . 3 (⊤ → (ℝ D (𝑥 ∈ (-1(,)1) ↦ (arcsin‘𝑥))) = (𝑥 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑥↑2))))))
468, 45eqtrd 2799 . 2 (⊤ → (ℝ D (arcsin ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑥↑2))))))
4746mptru 1660 1 (ℝ D (arcsin ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑥↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1652  wtru 1653  wcel 2155  Vcvv 3350  cdif 3731  cun 3732  cin 3733  wss 3734  {cpr 4338  cmpt 4890  ran crn 5280  cres 5281  wf 6066  cfv 6070  (class class class)co 6846  cc 10191  cr 10192  1c1 10194  +∞cpnf 10329  -∞cmnf 10330  cmin 10525  -cneg 10526   / cdiv 10943  2c2 11332  (,)cioo 12384  (,]cioc 12385  [,)cico 12386  cexp 13074  csqrt 14274  t crest 16363  TopOpenctopn 16364  topGenctg 16380  fldccnfld 20035  Clsdccld 21116   D cdv 23934  arcsincasin 24896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271  ax-addf 10272  ax-mulf 10273
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-supp 7502  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fsupp 8487  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10527  df-neg 10528  df-div 10944  df-nn 11280  df-2 11340  df-3 11341  df-4 11342  df-5 11343  df-6 11344  df-7 11345  df-8 11346  df-9 11347  df-n0 11544  df-z 11630  df-dec 11747  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12153  df-xadd 12154  df-xmul 12155  df-ioo 12388  df-ioc 12389  df-ico 12390  df-icc 12391  df-fz 12541  df-fzo 12681  df-fl 12808  df-mod 12884  df-seq 13016  df-exp 13075  df-fac 13272  df-bc 13301  df-hash 13329  df-shft 14108  df-cj 14140  df-re 14141  df-im 14142  df-sqrt 14276  df-abs 14277  df-limsup 14503  df-clim 14520  df-rlim 14521  df-sum 14718  df-ef 15096  df-sin 15098  df-cos 15099  df-tan 15100  df-pi 15101  df-struct 16148  df-ndx 16149  df-slot 16150  df-base 16152  df-sets 16153  df-ress 16154  df-plusg 16243  df-mulr 16244  df-starv 16245  df-sca 16246  df-vsca 16247  df-ip 16248  df-tset 16249  df-ple 16250  df-ds 16252  df-unif 16253  df-hom 16254  df-cco 16255  df-rest 16365  df-topn 16366  df-0g 16384  df-gsum 16385  df-topgen 16386  df-pt 16387  df-prds 16390  df-xrs 16444  df-qtop 16449  df-imas 16450  df-xps 16452  df-mre 16528  df-mrc 16529  df-acs 16531  df-mgm 17524  df-sgrp 17566  df-mnd 17577  df-submnd 17618  df-mulg 17824  df-cntz 18029  df-cmn 18477  df-psmet 20027  df-xmet 20028  df-met 20029  df-bl 20030  df-mopn 20031  df-fbas 20032  df-fg 20033  df-cnfld 20036  df-top 20994  df-topon 21011  df-topsp 21033  df-bases 21046  df-cld 21119  df-ntr 21120  df-cls 21121  df-nei 21198  df-lp 21236  df-perf 21237  df-cn 21327  df-cnp 21328  df-haus 21415  df-cmp 21486  df-tx 21661  df-hmeo 21854  df-fil 21945  df-fm 22037  df-flim 22038  df-flf 22039  df-xms 22420  df-ms 22421  df-tms 22422  df-cncf 22976  df-limc 23937  df-dv 23938  df-log 24610  df-cxp 24611  df-asin 24899
This theorem is referenced by:  areacirclem1  33946
  Copyright terms: Public domain W3C validator