Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvreasin Structured version   Visualization version   GIF version

Theorem dvreasin 37690
Description: Real derivative of arcsine. (Contributed by Brendan Leahy, 3-Aug-2017.) (Proof shortened by Brendan Leahy, 18-Dec-2018.)
Assertion
Ref Expression
dvreasin (ℝ D (arcsin ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑥↑2)))))

Proof of Theorem dvreasin
StepHypRef Expression
1 asinf 26780 . . . . . 6 arcsin:ℂ⟶ℂ
21a1i 11 . . . . 5 (⊤ → arcsin:ℂ⟶ℂ)
3 ioossre 13310 . . . . . . 7 (-1(,)1) ⊆ ℝ
4 ax-resscn 11066 . . . . . . 7 ℝ ⊆ ℂ
53, 4sstri 3945 . . . . . 6 (-1(,)1) ⊆ ℂ
65a1i 11 . . . . 5 (⊤ → (-1(,)1) ⊆ ℂ)
72, 6feqresmpt 6892 . . . 4 (⊤ → (arcsin ↾ (-1(,)1)) = (𝑥 ∈ (-1(,)1) ↦ (arcsin‘𝑥)))
87oveq2d 7365 . . 3 (⊤ → (ℝ D (arcsin ↾ (-1(,)1))) = (ℝ D (𝑥 ∈ (-1(,)1) ↦ (arcsin‘𝑥))))
9 eqid 2729 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10 reelprrecn 11101 . . . . 5 ℝ ∈ {ℝ, ℂ}
1110a1i 11 . . . 4 (⊤ → ℝ ∈ {ℝ, ℂ})
129recld2 24701 . . . . . 6 ℝ ∈ (Clsd‘(TopOpen‘ℂfld))
13 neg1rr 12114 . . . . . . . . 9 -1 ∈ ℝ
14 iocmnfcld 24654 . . . . . . . . 9 (-1 ∈ ℝ → (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))))
1513, 14ax-mp 5 . . . . . . . 8 (-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,)))
16 1re 11115 . . . . . . . . 9 1 ∈ ℝ
17 icopnfcld 24653 . . . . . . . . 9 (1 ∈ ℝ → (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
1816, 17ax-mp 5 . . . . . . . 8 (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))
19 uncld 22926 . . . . . . . 8 (((-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))) ∧ (1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran (,))))
2015, 18, 19mp2an 692 . . . . . . 7 ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran (,)))
21 tgioo4 24691 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2221fveq2i 6825 . . . . . . 7 (Clsd‘(topGen‘ran (,))) = (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))
2320, 22eleqtri 2826 . . . . . 6 ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))
24 restcldr 23059 . . . . . 6 ((ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) ∧ ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘((TopOpen‘ℂfld) ↾t ℝ))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)))
2512, 23, 24mp2an 692 . . . . 5 ((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld))
269cnfldtopon 24668 . . . . . . 7 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2726toponunii 22801 . . . . . 6 ℂ = (TopOpen‘ℂfld)
2827cldopn 22916 . . . . 5 (((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld))
2925, 28mp1i 13 . . . 4 (⊤ → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈ (TopOpen‘ℂfld))
30 incom 4160 . . . . . 6 (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ)
31 eqid 2729 . . . . . . 7 (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) = (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))
3231asindmre 37687 . . . . . 6 ((ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∩ ℝ) = (-1(,)1)
3330, 32eqtri 2752 . . . . 5 (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (-1(,)1)
3433a1i 11 . . . 4 (⊤ → (ℝ ∩ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (-1(,)1))
35 eldifi 4082 . . . . . 6 (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → 𝑥 ∈ ℂ)
36 asincl 26781 . . . . . 6 (𝑥 ∈ ℂ → (arcsin‘𝑥) ∈ ℂ)
3735, 36syl 17 . . . . 5 (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) → (arcsin‘𝑥) ∈ ℂ)
3837adantl 481 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) → (arcsin‘𝑥) ∈ ℂ)
39 ovexd 7384 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) → (1 / (√‘(1 − (𝑥↑2)))) ∈ V)
40 difssd 4088 . . . . . . 7 (⊤ → (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⊆ ℂ)
412, 40feqresmpt 6892 . . . . . 6 (⊤ → (arcsin ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞)))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arcsin‘𝑥)))
4241oveq2d 7365 . . . . 5 (⊤ → (ℂ D (arcsin ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))))) = (ℂ D (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arcsin‘𝑥))))
4331dvasin 37688 . . . . 5 (ℂ D (arcsin ↾ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (1 / (√‘(1 − (𝑥↑2)))))
4442, 43eqtr3di 2779 . . . 4 (⊤ → (ℂ D (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (arcsin‘𝑥))) = (𝑥 ∈ (ℂ ∖ ((-∞(,]-1) ∪ (1[,)+∞))) ↦ (1 / (√‘(1 − (𝑥↑2))))))
459, 11, 29, 34, 38, 39, 44dvmptres3 25858 . . 3 (⊤ → (ℝ D (𝑥 ∈ (-1(,)1) ↦ (arcsin‘𝑥))) = (𝑥 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑥↑2))))))
468, 45eqtrd 2764 . 2 (⊤ → (ℝ D (arcsin ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑥↑2))))))
4746mptru 1547 1 (ℝ D (arcsin ↾ (-1(,)1))) = (𝑥 ∈ (-1(,)1) ↦ (1 / (√‘(1 − (𝑥↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2109  Vcvv 3436  cdif 3900  cun 3901  cin 3902  wss 3903  {cpr 4579  cmpt 5173  ran crn 5620  cres 5621  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  1c1 11010  +∞cpnf 11146  -∞cmnf 11147  cmin 11347  -cneg 11348   / cdiv 11777  2c2 12183  (,)cioo 13248  (,]cioc 13249  [,)cico 13250  cexp 13968  csqrt 15140  t crest 17324  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21261  Clsdccld 22901   D cdv 25762  arcsincasin 26770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-tan 15978  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-cxp 26464  df-asin 26773
This theorem is referenced by:  areacirclem1  37692
  Copyright terms: Public domain W3C validator