| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmapfn | Structured version Visualization version GIF version | ||
| Description: A mapping is a function with the appropriate domain. (Contributed by AV, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| elmapfn | ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8825 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | |
| 2 | 1 | ffnd 6692 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Fn wfn 6509 (class class class)co 7390 ↑m cmap 8802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 |
| This theorem is referenced by: mapxpen 9113 fsuppmapnn0fiublem 13962 fsuppmapnn0fiub 13963 fsuppmapnn0fiub0 13965 suppssfz 13966 fsuppmapnn0ub 13967 mndpsuppss 18699 mndpfsupp 18701 frlmbas 21671 frlmsslsp 21712 eqmat 22318 matplusgcell 22327 matsubgcell 22328 matvscacell 22330 cramerlem1 22581 tmdgsum 23989 fmptco1f1o 32564 islinds5 33345 ellspds 33346 1arithidomlem2 33514 1arithidom 33515 lbsdiflsp0 33629 matmpo 33800 1smat1 33801 actfunsnf1o 34602 actfunsnrndisj 34603 reprinfz1 34620 unccur 37604 matunitlindflem1 37617 matunitlindflem2 37618 poimirlem4 37625 poimirlem5 37626 poimirlem6 37627 poimirlem7 37628 poimirlem10 37631 poimirlem11 37632 poimirlem12 37633 poimirlem16 37637 poimirlem19 37640 poimirlem29 37650 poimirlem30 37651 poimirlem31 37652 broucube 37655 fsuppind 42585 ofoafo 43352 ofoaass 43356 ofoacom 43357 rfovcnvf1od 44000 dssmapnvod 44016 dssmapntrcls 44124 k0004lem3 44145 unirnmap 45209 unirnmapsn 45215 ssmapsn 45217 dvnprodlem1 45951 dvnprodlem3 45953 rrxsnicc 46305 ioorrnopnlem 46309 ovnsubaddlem1 46575 hoiqssbllem1 46627 iccpartrn 47435 iccpartf 47436 iccpartnel 47443 dflinc2 48403 lincsum 48422 lincresunit2 48471 2arymaptfo 48647 rrx2pnecoorneor 48708 rrx2linest 48735 |
| Copyright terms: Public domain | W3C validator |