![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elmapfn | Structured version Visualization version GIF version |
Description: A mapping is a function with the appropriate domain. (Contributed by AV, 6-Apr-2019.) |
Ref | Expression |
---|---|
elmapfn | ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → 𝐴 Fn 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8162 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → 𝐴:𝐶⟶𝐵) | |
2 | 1 | ffnd 6292 | 1 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → 𝐴 Fn 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Fn wfn 6130 (class class class)co 6922 ↑𝑚 cmap 8140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-map 8142 |
This theorem is referenced by: mapxpen 8414 fsuppmapnn0fiublem 13108 fsuppmapnn0fiub 13109 fsuppmapnn0fiub0 13111 suppssfz 13112 fsuppmapnn0ub 13113 frlmbas 20498 frlmsslsp 20539 eqmat 20634 matplusgcell 20643 matsubgcell 20644 matvscacell 20646 cramerlem1 20900 tmdgsum 22307 fmptco1f1o 30013 islinds5 30428 ellspds 30429 lbsdiflsp0 30454 matmpt2 30481 1smat1 30482 actfunsnf1o 31298 actfunsnrndisj 31299 reprinfz1 31316 unccur 34011 matunitlindflem1 34025 matunitlindflem2 34026 poimirlem4 34033 poimirlem5 34034 poimirlem6 34035 poimirlem7 34036 poimirlem10 34039 poimirlem11 34040 poimirlem12 34041 poimirlem16 34045 poimirlem19 34048 poimirlem29 34058 poimirlem30 34059 poimirlem31 34060 broucube 34063 rfovcnvf1od 39246 dssmapnvod 39262 dssmapntrcls 39374 k0004lem3 39395 unirnmap 40313 unirnmapsn 40319 ssmapsn 40321 dvnprodlem1 41081 dvnprodlem3 41083 rrxsnicc 41436 ioorrnopnlem 41440 ovnsubaddlem1 41703 hoiqssbllem1 41755 iccpartrn 42390 iccpartf 42391 iccpartnel 42398 mndpsuppss 43159 mndpfsupp 43164 dflinc2 43206 lincsum 43225 lincresunit2 43274 rrx2pnecoorneor 43443 rrx2linest 43470 |
Copyright terms: Public domain | W3C validator |