Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elmapfn | Structured version Visualization version GIF version |
Description: A mapping is a function with the appropriate domain. (Contributed by AV, 6-Apr-2019.) |
Ref | Expression |
---|---|
elmapfn | ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8595 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | |
2 | 1 | ffnd 6585 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Fn wfn 6413 (class class class)co 7255 ↑m cmap 8573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 |
This theorem is referenced by: mapxpen 8879 fsuppmapnn0fiublem 13638 fsuppmapnn0fiub 13639 fsuppmapnn0fiub0 13641 suppssfz 13642 fsuppmapnn0ub 13643 frlmbas 20872 frlmsslsp 20913 eqmat 21481 matplusgcell 21490 matsubgcell 21491 matvscacell 21493 cramerlem1 21744 tmdgsum 23154 fmptco1f1o 30869 islinds5 31465 ellspds 31466 lbsdiflsp0 31609 matmpo 31655 1smat1 31656 actfunsnf1o 32484 actfunsnrndisj 32485 reprinfz1 32502 unccur 35687 matunitlindflem1 35700 matunitlindflem2 35701 poimirlem4 35708 poimirlem5 35709 poimirlem6 35710 poimirlem7 35711 poimirlem10 35714 poimirlem11 35715 poimirlem12 35716 poimirlem16 35720 poimirlem19 35723 poimirlem29 35733 poimirlem30 35734 poimirlem31 35735 broucube 35738 fsuppind 40202 rfovcnvf1od 41501 dssmapnvod 41517 dssmapntrcls 41627 k0004lem3 41648 unirnmap 42637 unirnmapsn 42643 ssmapsn 42645 dvnprodlem1 43377 dvnprodlem3 43379 rrxsnicc 43731 ioorrnopnlem 43735 ovnsubaddlem1 43998 hoiqssbllem1 44050 iccpartrn 44770 iccpartf 44771 iccpartnel 44778 mndpsuppss 45595 mndpfsupp 45600 dflinc2 45639 lincsum 45658 lincresunit2 45707 2arymaptfo 45888 rrx2pnecoorneor 45949 rrx2linest 45976 |
Copyright terms: Public domain | W3C validator |