| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmapfn | Structured version Visualization version GIF version | ||
| Description: A mapping is a function with the appropriate domain. (Contributed by AV, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| elmapfn | ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8773 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | |
| 2 | 1 | ffnd 6652 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Fn wfn 6476 (class class class)co 7346 ↑m cmap 8750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 |
| This theorem is referenced by: mapxpen 9056 fsuppmapnn0fiublem 13897 fsuppmapnn0fiub 13898 fsuppmapnn0fiub0 13900 suppssfz 13901 fsuppmapnn0ub 13902 mndpsuppss 18673 mndpfsupp 18675 frlmbas 21693 frlmsslsp 21734 eqmat 22340 matplusgcell 22349 matsubgcell 22350 matvscacell 22352 cramerlem1 22603 tmdgsum 24011 fmptco1f1o 32613 islinds5 33330 ellspds 33331 1arithidomlem2 33499 1arithidom 33500 lbsdiflsp0 33637 matmpo 33814 1smat1 33815 actfunsnf1o 34615 actfunsnrndisj 34616 reprinfz1 34633 unccur 37649 matunitlindflem1 37662 matunitlindflem2 37663 poimirlem4 37670 poimirlem5 37671 poimirlem6 37672 poimirlem7 37673 poimirlem10 37676 poimirlem11 37677 poimirlem12 37678 poimirlem16 37682 poimirlem19 37685 poimirlem29 37695 poimirlem30 37696 poimirlem31 37697 broucube 37700 fsuppind 42629 ofoafo 43395 ofoaass 43399 ofoacom 43400 rfovcnvf1od 44043 dssmapnvod 44059 dssmapntrcls 44167 k0004lem3 44188 unirnmap 45251 unirnmapsn 45257 ssmapsn 45259 dvnprodlem1 45990 dvnprodlem3 45992 rrxsnicc 46344 ioorrnopnlem 46348 ovnsubaddlem1 46614 hoiqssbllem1 46666 iccpartrn 47467 iccpartf 47468 iccpartnel 47475 dflinc2 48448 lincsum 48467 lincresunit2 48516 2arymaptfo 48692 rrx2pnecoorneor 48753 rrx2linest 48780 |
| Copyright terms: Public domain | W3C validator |