| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmapfn | Structured version Visualization version GIF version | ||
| Description: A mapping is a function with the appropriate domain. (Contributed by AV, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| elmapfn | ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8822 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | |
| 2 | 1 | ffnd 6689 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Fn wfn 6506 (class class class)co 7387 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 |
| This theorem is referenced by: mapxpen 9107 fsuppmapnn0fiublem 13955 fsuppmapnn0fiub 13956 fsuppmapnn0fiub0 13958 suppssfz 13959 fsuppmapnn0ub 13960 mndpsuppss 18692 mndpfsupp 18694 frlmbas 21664 frlmsslsp 21705 eqmat 22311 matplusgcell 22320 matsubgcell 22321 matvscacell 22323 cramerlem1 22574 tmdgsum 23982 fmptco1f1o 32557 islinds5 33338 ellspds 33339 1arithidomlem2 33507 1arithidom 33508 lbsdiflsp0 33622 matmpo 33793 1smat1 33794 actfunsnf1o 34595 actfunsnrndisj 34596 reprinfz1 34613 unccur 37597 matunitlindflem1 37610 matunitlindflem2 37611 poimirlem4 37618 poimirlem5 37619 poimirlem6 37620 poimirlem7 37621 poimirlem10 37624 poimirlem11 37625 poimirlem12 37626 poimirlem16 37630 poimirlem19 37633 poimirlem29 37643 poimirlem30 37644 poimirlem31 37645 broucube 37648 fsuppind 42578 ofoafo 43345 ofoaass 43349 ofoacom 43350 rfovcnvf1od 43993 dssmapnvod 44009 dssmapntrcls 44117 k0004lem3 44138 unirnmap 45202 unirnmapsn 45208 ssmapsn 45210 dvnprodlem1 45944 dvnprodlem3 45946 rrxsnicc 46298 ioorrnopnlem 46302 ovnsubaddlem1 46568 hoiqssbllem1 46620 iccpartrn 47431 iccpartf 47432 iccpartnel 47439 dflinc2 48399 lincsum 48418 lincresunit2 48467 2arymaptfo 48643 rrx2pnecoorneor 48704 rrx2linest 48731 |
| Copyright terms: Public domain | W3C validator |