![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elmapfn | Structured version Visualization version GIF version |
Description: A mapping is a function with the appropriate domain. (Contributed by AV, 6-Apr-2019.) |
Ref | Expression |
---|---|
elmapfn | ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8907 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | |
2 | 1 | ffnd 6748 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Fn wfn 6568 (class class class)co 7448 ↑m cmap 8884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 |
This theorem is referenced by: mapxpen 9209 fsuppmapnn0fiublem 14041 fsuppmapnn0fiub 14042 fsuppmapnn0fiub0 14044 suppssfz 14045 fsuppmapnn0ub 14046 frlmbas 21798 frlmsslsp 21839 eqmat 22451 matplusgcell 22460 matsubgcell 22461 matvscacell 22463 cramerlem1 22714 tmdgsum 24124 fmptco1f1o 32652 islinds5 33360 ellspds 33361 1arithidomlem2 33529 1arithidom 33530 lbsdiflsp0 33639 matmpo 33749 1smat1 33750 actfunsnf1o 34581 actfunsnrndisj 34582 reprinfz1 34599 unccur 37563 matunitlindflem1 37576 matunitlindflem2 37577 poimirlem4 37584 poimirlem5 37585 poimirlem6 37586 poimirlem7 37587 poimirlem10 37590 poimirlem11 37591 poimirlem12 37592 poimirlem16 37596 poimirlem19 37599 poimirlem29 37609 poimirlem30 37610 poimirlem31 37611 broucube 37614 fsuppind 42545 ofoafo 43318 ofoaass 43322 ofoacom 43323 rfovcnvf1od 43966 dssmapnvod 43982 dssmapntrcls 44090 k0004lem3 44111 unirnmap 45115 unirnmapsn 45121 ssmapsn 45123 dvnprodlem1 45867 dvnprodlem3 45869 rrxsnicc 46221 ioorrnopnlem 46225 ovnsubaddlem1 46491 hoiqssbllem1 46543 iccpartrn 47304 iccpartf 47305 iccpartnel 47312 mndpsuppss 48096 mndpfsupp 48101 dflinc2 48139 lincsum 48158 lincresunit2 48207 2arymaptfo 48388 rrx2pnecoorneor 48449 rrx2linest 48476 |
Copyright terms: Public domain | W3C validator |