Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elmapfn | Structured version Visualization version GIF version |
Description: A mapping is a function with the appropriate domain. (Contributed by AV, 6-Apr-2019.) |
Ref | Expression |
---|---|
elmapfn | ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8637 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | |
2 | 1 | ffnd 6601 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Fn wfn 6428 (class class class)co 7275 ↑m cmap 8615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 |
This theorem is referenced by: mapxpen 8930 fsuppmapnn0fiublem 13710 fsuppmapnn0fiub 13711 fsuppmapnn0fiub0 13713 suppssfz 13714 fsuppmapnn0ub 13715 frlmbas 20962 frlmsslsp 21003 eqmat 21573 matplusgcell 21582 matsubgcell 21583 matvscacell 21585 cramerlem1 21836 tmdgsum 23246 fmptco1f1o 30968 islinds5 31563 ellspds 31564 lbsdiflsp0 31707 matmpo 31753 1smat1 31754 actfunsnf1o 32584 actfunsnrndisj 32585 reprinfz1 32602 unccur 35760 matunitlindflem1 35773 matunitlindflem2 35774 poimirlem4 35781 poimirlem5 35782 poimirlem6 35783 poimirlem7 35784 poimirlem10 35787 poimirlem11 35788 poimirlem12 35789 poimirlem16 35793 poimirlem19 35796 poimirlem29 35806 poimirlem30 35807 poimirlem31 35808 broucube 35811 fsuppind 40279 rfovcnvf1od 41612 dssmapnvod 41628 dssmapntrcls 41738 k0004lem3 41759 unirnmap 42748 unirnmapsn 42754 ssmapsn 42756 dvnprodlem1 43487 dvnprodlem3 43489 rrxsnicc 43841 ioorrnopnlem 43845 ovnsubaddlem1 44108 hoiqssbllem1 44160 iccpartrn 44882 iccpartf 44883 iccpartnel 44890 mndpsuppss 45707 mndpfsupp 45712 dflinc2 45751 lincsum 45770 lincresunit2 45819 2arymaptfo 46000 rrx2pnecoorneor 46061 rrx2linest 46088 |
Copyright terms: Public domain | W3C validator |