| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmapfn | Structured version Visualization version GIF version | ||
| Description: A mapping is a function with the appropriate domain. (Contributed by AV, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| elmapfn | ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8783 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | |
| 2 | 1 | ffnd 6657 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Fn wfn 6481 (class class class)co 7353 ↑m cmap 8760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 |
| This theorem is referenced by: mapxpen 9067 fsuppmapnn0fiublem 13915 fsuppmapnn0fiub 13916 fsuppmapnn0fiub0 13918 suppssfz 13919 fsuppmapnn0ub 13920 mndpsuppss 18657 mndpfsupp 18659 frlmbas 21680 frlmsslsp 21721 eqmat 22327 matplusgcell 22336 matsubgcell 22337 matvscacell 22339 cramerlem1 22590 tmdgsum 23998 fmptco1f1o 32590 islinds5 33317 ellspds 33318 1arithidomlem2 33486 1arithidom 33487 lbsdiflsp0 33601 matmpo 33772 1smat1 33773 actfunsnf1o 34574 actfunsnrndisj 34575 reprinfz1 34592 unccur 37585 matunitlindflem1 37598 matunitlindflem2 37599 poimirlem4 37606 poimirlem5 37607 poimirlem6 37608 poimirlem7 37609 poimirlem10 37612 poimirlem11 37613 poimirlem12 37614 poimirlem16 37618 poimirlem19 37621 poimirlem29 37631 poimirlem30 37632 poimirlem31 37633 broucube 37636 fsuppind 42566 ofoafo 43332 ofoaass 43336 ofoacom 43337 rfovcnvf1od 43980 dssmapnvod 43996 dssmapntrcls 44104 k0004lem3 44125 unirnmap 45189 unirnmapsn 45195 ssmapsn 45197 dvnprodlem1 45931 dvnprodlem3 45933 rrxsnicc 46285 ioorrnopnlem 46289 ovnsubaddlem1 46555 hoiqssbllem1 46607 iccpartrn 47418 iccpartf 47419 iccpartnel 47426 dflinc2 48399 lincsum 48418 lincresunit2 48467 2arymaptfo 48643 rrx2pnecoorneor 48704 rrx2linest 48731 |
| Copyright terms: Public domain | W3C validator |