Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elmapfn | Structured version Visualization version GIF version |
Description: A mapping is a function with the appropriate domain. (Contributed by AV, 6-Apr-2019.) |
Ref | Expression |
---|---|
elmapfn | ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8439 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | |
2 | 1 | ffnd 6500 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 Fn wfn 6331 (class class class)co 7151 ↑m cmap 8417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-fv 6344 df-ov 7154 df-oprab 7155 df-mpo 7156 df-1st 7694 df-2nd 7695 df-map 8419 |
This theorem is referenced by: mapxpen 8705 fsuppmapnn0fiublem 13400 fsuppmapnn0fiub 13401 fsuppmapnn0fiub0 13403 suppssfz 13404 fsuppmapnn0ub 13405 frlmbas 20513 frlmsslsp 20554 eqmat 21117 matplusgcell 21126 matsubgcell 21127 matvscacell 21129 cramerlem1 21380 tmdgsum 22788 fmptco1f1o 30483 islinds5 31077 ellspds 31078 lbsdiflsp0 31221 matmpo 31267 1smat1 31268 actfunsnf1o 32096 actfunsnrndisj 32097 reprinfz1 32114 unccur 35313 matunitlindflem1 35326 matunitlindflem2 35327 poimirlem4 35334 poimirlem5 35335 poimirlem6 35336 poimirlem7 35337 poimirlem10 35340 poimirlem11 35341 poimirlem12 35342 poimirlem16 35346 poimirlem19 35349 poimirlem29 35359 poimirlem30 35360 poimirlem31 35361 broucube 35364 fsuppind 39777 rfovcnvf1od 41071 dssmapnvod 41087 dssmapntrcls 41197 k0004lem3 41218 unirnmap 42200 unirnmapsn 42206 ssmapsn 42208 dvnprodlem1 42947 dvnprodlem3 42949 rrxsnicc 43301 ioorrnopnlem 43305 ovnsubaddlem1 43568 hoiqssbllem1 43620 iccpartrn 44308 iccpartf 44309 iccpartnel 44316 mndpsuppss 45133 mndpfsupp 45138 dflinc2 45177 lincsum 45196 lincresunit2 45245 2arymaptfo 45426 rrx2pnecoorneor 45487 rrx2linest 45514 |
Copyright terms: Public domain | W3C validator |