| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmapfn | Structured version Visualization version GIF version | ||
| Description: A mapping is a function with the appropriate domain. (Contributed by AV, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| elmapfn | ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8889 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | |
| 2 | 1 | ffnd 6737 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Fn wfn 6556 (class class class)co 7431 ↑m cmap 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-map 8868 |
| This theorem is referenced by: mapxpen 9183 fsuppmapnn0fiublem 14031 fsuppmapnn0fiub 14032 fsuppmapnn0fiub0 14034 suppssfz 14035 fsuppmapnn0ub 14036 mndpsuppss 18778 mndpfsupp 18780 frlmbas 21775 frlmsslsp 21816 eqmat 22430 matplusgcell 22439 matsubgcell 22440 matvscacell 22442 cramerlem1 22693 tmdgsum 24103 fmptco1f1o 32643 islinds5 33395 ellspds 33396 1arithidomlem2 33564 1arithidom 33565 lbsdiflsp0 33677 matmpo 33802 1smat1 33803 actfunsnf1o 34619 actfunsnrndisj 34620 reprinfz1 34637 unccur 37610 matunitlindflem1 37623 matunitlindflem2 37624 poimirlem4 37631 poimirlem5 37632 poimirlem6 37633 poimirlem7 37634 poimirlem10 37637 poimirlem11 37638 poimirlem12 37639 poimirlem16 37643 poimirlem19 37646 poimirlem29 37656 poimirlem30 37657 poimirlem31 37658 broucube 37661 fsuppind 42600 ofoafo 43369 ofoaass 43373 ofoacom 43374 rfovcnvf1od 44017 dssmapnvod 44033 dssmapntrcls 44141 k0004lem3 44162 unirnmap 45213 unirnmapsn 45219 ssmapsn 45221 dvnprodlem1 45961 dvnprodlem3 45963 rrxsnicc 46315 ioorrnopnlem 46319 ovnsubaddlem1 46585 hoiqssbllem1 46637 iccpartrn 47417 iccpartf 47418 iccpartnel 47425 dflinc2 48327 lincsum 48346 lincresunit2 48395 2arymaptfo 48575 rrx2pnecoorneor 48636 rrx2linest 48663 |
| Copyright terms: Public domain | W3C validator |