| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmapfn | Structured version Visualization version GIF version | ||
| Description: A mapping is a function with the appropriate domain. (Contributed by AV, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| elmapfn | ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8863 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | |
| 2 | 1 | ffnd 6707 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Fn wfn 6526 (class class class)co 7405 ↑m cmap 8840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 |
| This theorem is referenced by: mapxpen 9157 fsuppmapnn0fiublem 14008 fsuppmapnn0fiub 14009 fsuppmapnn0fiub0 14011 suppssfz 14012 fsuppmapnn0ub 14013 mndpsuppss 18743 mndpfsupp 18745 frlmbas 21715 frlmsslsp 21756 eqmat 22362 matplusgcell 22371 matsubgcell 22372 matvscacell 22374 cramerlem1 22625 tmdgsum 24033 fmptco1f1o 32611 islinds5 33382 ellspds 33383 1arithidomlem2 33551 1arithidom 33552 lbsdiflsp0 33666 matmpo 33834 1smat1 33835 actfunsnf1o 34636 actfunsnrndisj 34637 reprinfz1 34654 unccur 37627 matunitlindflem1 37640 matunitlindflem2 37641 poimirlem4 37648 poimirlem5 37649 poimirlem6 37650 poimirlem7 37651 poimirlem10 37654 poimirlem11 37655 poimirlem12 37656 poimirlem16 37660 poimirlem19 37663 poimirlem29 37673 poimirlem30 37674 poimirlem31 37675 broucube 37678 fsuppind 42613 ofoafo 43380 ofoaass 43384 ofoacom 43385 rfovcnvf1od 44028 dssmapnvod 44044 dssmapntrcls 44152 k0004lem3 44173 unirnmap 45232 unirnmapsn 45238 ssmapsn 45240 dvnprodlem1 45975 dvnprodlem3 45977 rrxsnicc 46329 ioorrnopnlem 46333 ovnsubaddlem1 46599 hoiqssbllem1 46651 iccpartrn 47444 iccpartf 47445 iccpartnel 47452 dflinc2 48386 lincsum 48405 lincresunit2 48454 2arymaptfo 48634 rrx2pnecoorneor 48695 rrx2linest 48722 |
| Copyright terms: Public domain | W3C validator |