| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmapfn | Structured version Visualization version GIF version | ||
| Description: A mapping is a function with the appropriate domain. (Contributed by AV, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| elmapfn | ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8781 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | |
| 2 | 1 | ffnd 6659 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Fn wfn 6483 (class class class)co 7354 ↑m cmap 8758 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-map 8760 |
| This theorem is referenced by: mapxpen 9065 fsuppmapnn0fiublem 13901 fsuppmapnn0fiub 13902 fsuppmapnn0fiub0 13904 suppssfz 13905 fsuppmapnn0ub 13906 mndpsuppss 18677 mndpfsupp 18679 frlmbas 21696 frlmsslsp 21737 eqmat 22342 matplusgcell 22351 matsubgcell 22352 matvscacell 22354 cramerlem1 22605 tmdgsum 24013 fmptco1f1o 32619 islinds5 33341 ellspds 33342 1arithidomlem2 33510 1arithidom 33511 lbsdiflsp0 33662 matmpo 33839 1smat1 33840 actfunsnf1o 34640 actfunsnrndisj 34641 reprinfz1 34658 unccur 37666 matunitlindflem1 37679 matunitlindflem2 37680 poimirlem4 37687 poimirlem5 37688 poimirlem6 37689 poimirlem7 37690 poimirlem10 37693 poimirlem11 37694 poimirlem12 37695 poimirlem16 37699 poimirlem19 37702 poimirlem29 37712 poimirlem30 37713 poimirlem31 37714 broucube 37717 fsuppind 42711 ofoafo 43476 ofoaass 43480 ofoacom 43481 rfovcnvf1od 44124 dssmapnvod 44140 dssmapntrcls 44248 k0004lem3 44269 unirnmap 45332 unirnmapsn 45338 ssmapsn 45340 dvnprodlem1 46071 dvnprodlem3 46073 rrxsnicc 46425 ioorrnopnlem 46429 ovnsubaddlem1 46695 hoiqssbllem1 46747 iccpartrn 47557 iccpartf 47558 iccpartnel 47565 dflinc2 48538 lincsum 48557 lincresunit2 48606 2arymaptfo 48782 rrx2pnecoorneor 48843 rrx2linest 48870 |
| Copyright terms: Public domain | W3C validator |