![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elmapfn | Structured version Visualization version GIF version |
Description: A mapping is a function with the appropriate domain. (Contributed by AV, 6-Apr-2019.) |
Ref | Expression |
---|---|
elmapfn | ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8888 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | |
2 | 1 | ffnd 6738 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Fn wfn 6558 (class class class)co 7431 ↑m cmap 8865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-map 8867 |
This theorem is referenced by: mapxpen 9182 fsuppmapnn0fiublem 14028 fsuppmapnn0fiub 14029 fsuppmapnn0fiub0 14031 suppssfz 14032 fsuppmapnn0ub 14033 mndpsuppss 18791 mndpfsupp 18793 frlmbas 21793 frlmsslsp 21834 eqmat 22446 matplusgcell 22455 matsubgcell 22456 matvscacell 22458 cramerlem1 22709 tmdgsum 24119 fmptco1f1o 32650 islinds5 33375 ellspds 33376 1arithidomlem2 33544 1arithidom 33545 lbsdiflsp0 33654 matmpo 33764 1smat1 33765 actfunsnf1o 34598 actfunsnrndisj 34599 reprinfz1 34616 unccur 37590 matunitlindflem1 37603 matunitlindflem2 37604 poimirlem4 37611 poimirlem5 37612 poimirlem6 37613 poimirlem7 37614 poimirlem10 37617 poimirlem11 37618 poimirlem12 37619 poimirlem16 37623 poimirlem19 37626 poimirlem29 37636 poimirlem30 37637 poimirlem31 37638 broucube 37641 fsuppind 42577 ofoafo 43346 ofoaass 43350 ofoacom 43351 rfovcnvf1od 43994 dssmapnvod 44010 dssmapntrcls 44118 k0004lem3 44139 unirnmap 45151 unirnmapsn 45157 ssmapsn 45159 dvnprodlem1 45902 dvnprodlem3 45904 rrxsnicc 46256 ioorrnopnlem 46260 ovnsubaddlem1 46526 hoiqssbllem1 46578 iccpartrn 47355 iccpartf 47356 iccpartnel 47363 dflinc2 48256 lincsum 48275 lincresunit2 48324 2arymaptfo 48504 rrx2pnecoorneor 48565 rrx2linest 48592 |
Copyright terms: Public domain | W3C validator |