Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > vhmcls | Structured version Visualization version GIF version |
Description: All variable hypotheses are in the closure. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mclsval.d | ⊢ 𝐷 = (mDV‘𝑇) |
mclsval.e | ⊢ 𝐸 = (mEx‘𝑇) |
mclsval.c | ⊢ 𝐶 = (mCls‘𝑇) |
mclsval.1 | ⊢ (𝜑 → 𝑇 ∈ mFS) |
mclsval.2 | ⊢ (𝜑 → 𝐾 ⊆ 𝐷) |
mclsval.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐸) |
ssmclslem.h | ⊢ 𝐻 = (mVH‘𝑇) |
vhmcls.v | ⊢ 𝑉 = (mVR‘𝑇) |
vhmcls.3 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
vhmcls | ⊢ (𝜑 → (𝐻‘𝑋) ∈ (𝐾𝐶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mclsval.d | . . . 4 ⊢ 𝐷 = (mDV‘𝑇) | |
2 | mclsval.e | . . . 4 ⊢ 𝐸 = (mEx‘𝑇) | |
3 | mclsval.c | . . . 4 ⊢ 𝐶 = (mCls‘𝑇) | |
4 | mclsval.1 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ mFS) | |
5 | mclsval.2 | . . . 4 ⊢ (𝜑 → 𝐾 ⊆ 𝐷) | |
6 | mclsval.3 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐸) | |
7 | ssmclslem.h | . . . 4 ⊢ 𝐻 = (mVH‘𝑇) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ssmclslem 33506 | . . 3 ⊢ (𝜑 → (𝐵 ∪ ran 𝐻) ⊆ (𝐾𝐶𝐵)) |
9 | 8 | unssbd 4126 | . 2 ⊢ (𝜑 → ran 𝐻 ⊆ (𝐾𝐶𝐵)) |
10 | vhmcls.v | . . . . 5 ⊢ 𝑉 = (mVR‘𝑇) | |
11 | 10, 2, 7 | mvhf 33499 | . . . 4 ⊢ (𝑇 ∈ mFS → 𝐻:𝑉⟶𝐸) |
12 | ffn 6596 | . . . 4 ⊢ (𝐻:𝑉⟶𝐸 → 𝐻 Fn 𝑉) | |
13 | 4, 11, 12 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐻 Fn 𝑉) |
14 | vhmcls.3 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
15 | fnfvelrn 6952 | . . 3 ⊢ ((𝐻 Fn 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝐻‘𝑋) ∈ ran 𝐻) | |
16 | 13, 14, 15 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐻‘𝑋) ∈ ran 𝐻) |
17 | 9, 16 | sseldd 3926 | 1 ⊢ (𝜑 → (𝐻‘𝑋) ∈ (𝐾𝐶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 ran crn 5589 Fn wfn 6425 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 mVRcmvar 33402 mExcmex 33408 mDVcmdv 33409 mVHcmvh 33413 mFScmfs 33417 mClscmcls 33418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-ot 4575 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-pm 8592 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-fzo 13365 df-seq 13703 df-hash 14026 df-word 14199 df-concat 14255 df-s1 14282 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-0g 17133 df-gsum 17134 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-submnd 18412 df-frmd 18469 df-mrex 33427 df-mex 33428 df-mrsub 33431 df-msub 33432 df-mvh 33433 df-mpst 33434 df-msr 33435 df-msta 33436 df-mfs 33437 df-mcls 33438 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |