Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > vhmcls | Structured version Visualization version GIF version |
Description: All variable hypotheses are in the closure. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mclsval.d | ⊢ 𝐷 = (mDV‘𝑇) |
mclsval.e | ⊢ 𝐸 = (mEx‘𝑇) |
mclsval.c | ⊢ 𝐶 = (mCls‘𝑇) |
mclsval.1 | ⊢ (𝜑 → 𝑇 ∈ mFS) |
mclsval.2 | ⊢ (𝜑 → 𝐾 ⊆ 𝐷) |
mclsval.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐸) |
ssmclslem.h | ⊢ 𝐻 = (mVH‘𝑇) |
vhmcls.v | ⊢ 𝑉 = (mVR‘𝑇) |
vhmcls.3 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
vhmcls | ⊢ (𝜑 → (𝐻‘𝑋) ∈ (𝐾𝐶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mclsval.d | . . . 4 ⊢ 𝐷 = (mDV‘𝑇) | |
2 | mclsval.e | . . . 4 ⊢ 𝐸 = (mEx‘𝑇) | |
3 | mclsval.c | . . . 4 ⊢ 𝐶 = (mCls‘𝑇) | |
4 | mclsval.1 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ mFS) | |
5 | mclsval.2 | . . . 4 ⊢ (𝜑 → 𝐾 ⊆ 𝐷) | |
6 | mclsval.3 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐸) | |
7 | ssmclslem.h | . . . 4 ⊢ 𝐻 = (mVH‘𝑇) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ssmclslem 33523 | . . 3 ⊢ (𝜑 → (𝐵 ∪ ran 𝐻) ⊆ (𝐾𝐶𝐵)) |
9 | 8 | unssbd 4127 | . 2 ⊢ (𝜑 → ran 𝐻 ⊆ (𝐾𝐶𝐵)) |
10 | vhmcls.v | . . . . 5 ⊢ 𝑉 = (mVR‘𝑇) | |
11 | 10, 2, 7 | mvhf 33516 | . . . 4 ⊢ (𝑇 ∈ mFS → 𝐻:𝑉⟶𝐸) |
12 | ffn 6598 | . . . 4 ⊢ (𝐻:𝑉⟶𝐸 → 𝐻 Fn 𝑉) | |
13 | 4, 11, 12 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐻 Fn 𝑉) |
14 | vhmcls.3 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
15 | fnfvelrn 6955 | . . 3 ⊢ ((𝐻 Fn 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝐻‘𝑋) ∈ ran 𝐻) | |
16 | 13, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐻‘𝑋) ∈ ran 𝐻) |
17 | 9, 16 | sseldd 3927 | 1 ⊢ (𝜑 → (𝐻‘𝑋) ∈ (𝐾𝐶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 ran crn 5591 Fn wfn 6427 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 mVRcmvar 33419 mExcmex 33425 mDVcmdv 33426 mVHcmvh 33430 mFScmfs 33434 mClscmcls 33435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-ot 4576 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-map 8600 df-pm 8601 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12582 df-fz 13239 df-fzo 13382 df-seq 13720 df-hash 14043 df-word 14216 df-concat 14272 df-s1 14299 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-0g 17150 df-gsum 17151 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-submnd 18429 df-frmd 18486 df-mrex 33444 df-mex 33445 df-mrsub 33448 df-msub 33449 df-mvh 33450 df-mpst 33451 df-msr 33452 df-msta 33453 df-mfs 33454 df-mcls 33455 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |