| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vhmcls | Structured version Visualization version GIF version | ||
| Description: All variable hypotheses are in the closure. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mclsval.d | ⊢ 𝐷 = (mDV‘𝑇) |
| mclsval.e | ⊢ 𝐸 = (mEx‘𝑇) |
| mclsval.c | ⊢ 𝐶 = (mCls‘𝑇) |
| mclsval.1 | ⊢ (𝜑 → 𝑇 ∈ mFS) |
| mclsval.2 | ⊢ (𝜑 → 𝐾 ⊆ 𝐷) |
| mclsval.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐸) |
| ssmclslem.h | ⊢ 𝐻 = (mVH‘𝑇) |
| vhmcls.v | ⊢ 𝑉 = (mVR‘𝑇) |
| vhmcls.3 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| vhmcls | ⊢ (𝜑 → (𝐻‘𝑋) ∈ (𝐾𝐶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mclsval.d | . . . 4 ⊢ 𝐷 = (mDV‘𝑇) | |
| 2 | mclsval.e | . . . 4 ⊢ 𝐸 = (mEx‘𝑇) | |
| 3 | mclsval.c | . . . 4 ⊢ 𝐶 = (mCls‘𝑇) | |
| 4 | mclsval.1 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ mFS) | |
| 5 | mclsval.2 | . . . 4 ⊢ (𝜑 → 𝐾 ⊆ 𝐷) | |
| 6 | mclsval.3 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐸) | |
| 7 | ssmclslem.h | . . . 4 ⊢ 𝐻 = (mVH‘𝑇) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ssmclslem 35559 | . . 3 ⊢ (𝜑 → (𝐵 ∪ ran 𝐻) ⊆ (𝐾𝐶𝐵)) |
| 9 | 8 | unssbd 4160 | . 2 ⊢ (𝜑 → ran 𝐻 ⊆ (𝐾𝐶𝐵)) |
| 10 | vhmcls.v | . . . . 5 ⊢ 𝑉 = (mVR‘𝑇) | |
| 11 | 10, 2, 7 | mvhf 35552 | . . . 4 ⊢ (𝑇 ∈ mFS → 𝐻:𝑉⟶𝐸) |
| 12 | ffn 6691 | . . . 4 ⊢ (𝐻:𝑉⟶𝐸 → 𝐻 Fn 𝑉) | |
| 13 | 4, 11, 12 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐻 Fn 𝑉) |
| 14 | vhmcls.3 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 15 | fnfvelrn 7055 | . . 3 ⊢ ((𝐻 Fn 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝐻‘𝑋) ∈ ran 𝐻) | |
| 16 | 13, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐻‘𝑋) ∈ ran 𝐻) |
| 17 | 9, 16 | sseldd 3950 | 1 ⊢ (𝜑 → (𝐻‘𝑋) ∈ (𝐾𝐶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ran crn 5642 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 mVRcmvar 35455 mExcmex 35461 mDVcmdv 35462 mVHcmvh 35466 mFScmfs 35470 mClscmcls 35471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-ot 4601 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-word 14486 df-concat 14543 df-s1 14568 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-gsum 17412 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-frmd 18783 df-mrex 35480 df-mex 35481 df-mrsub 35484 df-msub 35485 df-mvh 35486 df-mpst 35487 df-msr 35488 df-msta 35489 df-mfs 35490 df-mcls 35491 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |