![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vhmcls | Structured version Visualization version GIF version |
Description: All variable hypotheses are in the closure. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mclsval.d | ⊢ 𝐷 = (mDV‘𝑇) |
mclsval.e | ⊢ 𝐸 = (mEx‘𝑇) |
mclsval.c | ⊢ 𝐶 = (mCls‘𝑇) |
mclsval.1 | ⊢ (𝜑 → 𝑇 ∈ mFS) |
mclsval.2 | ⊢ (𝜑 → 𝐾 ⊆ 𝐷) |
mclsval.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐸) |
ssmclslem.h | ⊢ 𝐻 = (mVH‘𝑇) |
vhmcls.v | ⊢ 𝑉 = (mVR‘𝑇) |
vhmcls.3 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
vhmcls | ⊢ (𝜑 → (𝐻‘𝑋) ∈ (𝐾𝐶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mclsval.d | . . . 4 ⊢ 𝐷 = (mDV‘𝑇) | |
2 | mclsval.e | . . . 4 ⊢ 𝐸 = (mEx‘𝑇) | |
3 | mclsval.c | . . . 4 ⊢ 𝐶 = (mCls‘𝑇) | |
4 | mclsval.1 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ mFS) | |
5 | mclsval.2 | . . . 4 ⊢ (𝜑 → 𝐾 ⊆ 𝐷) | |
6 | mclsval.3 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐸) | |
7 | ssmclslem.h | . . . 4 ⊢ 𝐻 = (mVH‘𝑇) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ssmclslem 35550 | . . 3 ⊢ (𝜑 → (𝐵 ∪ ran 𝐻) ⊆ (𝐾𝐶𝐵)) |
9 | 8 | unssbd 4204 | . 2 ⊢ (𝜑 → ran 𝐻 ⊆ (𝐾𝐶𝐵)) |
10 | vhmcls.v | . . . . 5 ⊢ 𝑉 = (mVR‘𝑇) | |
11 | 10, 2, 7 | mvhf 35543 | . . . 4 ⊢ (𝑇 ∈ mFS → 𝐻:𝑉⟶𝐸) |
12 | ffn 6737 | . . . 4 ⊢ (𝐻:𝑉⟶𝐸 → 𝐻 Fn 𝑉) | |
13 | 4, 11, 12 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐻 Fn 𝑉) |
14 | vhmcls.3 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
15 | fnfvelrn 7100 | . . 3 ⊢ ((𝐻 Fn 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝐻‘𝑋) ∈ ran 𝐻) | |
16 | 13, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐻‘𝑋) ∈ ran 𝐻) |
17 | 9, 16 | sseldd 3996 | 1 ⊢ (𝜑 → (𝐻‘𝑋) ∈ (𝐾𝐶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 ran crn 5690 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 mVRcmvar 35446 mExcmex 35452 mDVcmdv 35453 mVHcmvh 35457 mFScmfs 35461 mClscmcls 35462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-ot 4640 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-word 14550 df-concat 14606 df-s1 14631 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-0g 17488 df-gsum 17489 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-frmd 18875 df-mrex 35471 df-mex 35472 df-mrsub 35475 df-msub 35476 df-mvh 35477 df-mpst 35478 df-msr 35479 df-msta 35480 df-mfs 35481 df-mcls 35482 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |