| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funcrcl3 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a functor. (Contributed by Zhi Wang, 17-Sep-2025.) |
| Ref | Expression |
|---|---|
| funcrcl2.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| Ref | Expression |
|---|---|
| funcrcl3 | ⊢ (𝜑 → 𝐸 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcrcl2.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 2 | df-br 5096 | . . . 4 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 3 | 2 | biimpi 216 | . . 3 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 4 | funcrcl 17789 | . . 3 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
| 5 | 1, 3, 4 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 6 | 5 | simprd 495 | 1 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 〈cop 4585 class class class wbr 5095 (class class class)co 7353 Catccat 17589 Func cfunc 17780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-dm 5633 df-iota 6442 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-func 17784 |
| This theorem is referenced by: imasubc2 49157 imasubc3 49161 upciclem2 49172 upciclem3 49173 upeu2 49177 uobrcl 49198 natoppfb 49236 fuco11 49331 fuco11cl 49332 fuco21 49341 fuco11b 49342 fuco11bALT 49343 fuco22natlem2 49348 fuco22natlem 49350 fucoid 49353 fucocolem1 49358 fucolid 49366 fucorid 49367 postcofval 49369 postcofcl 49370 precofval 49372 precofvalALT 49373 precofcl 49375 prcoftposcurfuco 49388 prcof1 49393 prcof2a 49394 prcof2 49395 prcofdiag1 49398 prcofdiag 49399 fucoppclem 49412 fucoppcid 49413 eufunclem 49526 diag1f1olem 49538 diag2f1olem 49541 lanval 49624 ranval 49625 lanup 49646 ranup 49647 lmdpropd 49662 cmdpropd 49663 concl 49666 coccl 49667 concom 49668 coccom 49669 islmd 49670 iscmd 49671 termolmd 49675 lmdran 49676 cmdlan 49677 |
| Copyright terms: Public domain | W3C validator |