Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcrcl3 Structured version   Visualization version   GIF version

Theorem funcrcl3 48774
Description: Reverse closure for a functor. (Contributed by Zhi Wang, 17-Sep-2025.)
Hypothesis
Ref Expression
funcrcl2.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Assertion
Ref Expression
funcrcl3 (𝜑𝐸 ∈ Cat)

Proof of Theorem funcrcl3
StepHypRef Expression
1 funcrcl2.f . . 3 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
2 df-br 5169 . . . 4 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
32biimpi 216 . . 3 (𝐹(𝐷 Func 𝐸)𝐺 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
4 funcrcl 17948 . . 3 (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
51, 3, 43syl 18 . 2 (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
65simprd 495 1 (𝜑𝐸 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cop 4655   class class class wbr 5168  (class class class)co 7452  Catccat 17743   Func cfunc 17939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5319  ax-nul 5326  ax-pr 5449
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3445  df-v 3491  df-dif 3980  df-un 3982  df-ss 3994  df-nul 4354  df-if 4550  df-sn 4650  df-pr 4652  df-op 4656  df-uni 4934  df-br 5169  df-opab 5231  df-xp 5708  df-dm 5712  df-iota 6529  df-fv 6585  df-ov 7455  df-oprab 7456  df-mpo 7457  df-func 17943
This theorem is referenced by:  upciclem2  48777  upciclem3  48778  upeu2  48782
  Copyright terms: Public domain W3C validator