| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funcrcl3 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a functor. (Contributed by Zhi Wang, 17-Sep-2025.) |
| Ref | Expression |
|---|---|
| funcrcl2.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| Ref | Expression |
|---|---|
| funcrcl3 | ⊢ (𝜑 → 𝐸 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcrcl2.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 2 | df-br 5096 | . . . 4 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 3 | 2 | biimpi 216 | . . 3 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 4 | funcrcl 17778 | . . 3 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
| 5 | 1, 3, 4 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 6 | 5 | simprd 495 | 1 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 〈cop 4583 class class class wbr 5095 (class class class)co 7355 Catccat 17578 Func cfunc 17769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-dm 5631 df-iota 6445 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-func 17773 |
| This theorem is referenced by: imasubc2 49313 imasubc3 49317 upciclem2 49328 upciclem3 49329 upeu2 49333 uobrcl 49354 natoppfb 49392 fuco11 49487 fuco11cl 49488 fuco21 49497 fuco11b 49498 fuco11bALT 49499 fuco22natlem2 49504 fuco22natlem 49506 fucoid 49509 fucocolem1 49514 fucolid 49522 fucorid 49523 postcofval 49525 postcofcl 49526 precofval 49528 precofvalALT 49529 precofcl 49531 prcoftposcurfuco 49544 prcof1 49549 prcof2a 49550 prcof2 49551 prcofdiag1 49554 prcofdiag 49555 fucoppclem 49568 fucoppcid 49569 eufunclem 49682 diag1f1olem 49694 diag2f1olem 49697 lanval 49780 ranval 49781 lanup 49802 ranup 49803 lmdpropd 49818 cmdpropd 49819 concl 49822 coccl 49823 concom 49824 coccom 49825 islmd 49826 iscmd 49827 termolmd 49831 lmdran 49832 cmdlan 49833 |
| Copyright terms: Public domain | W3C validator |