| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funcrcl3 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a functor. (Contributed by Zhi Wang, 17-Sep-2025.) |
| Ref | Expression |
|---|---|
| funcrcl2.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| Ref | Expression |
|---|---|
| funcrcl3 | ⊢ (𝜑 → 𝐸 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcrcl2.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 2 | df-br 5124 | . . . 4 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 3 | 2 | biimpi 216 | . . 3 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 4 | funcrcl 17880 | . . 3 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
| 5 | 1, 3, 4 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 6 | 5 | simprd 495 | 1 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 〈cop 4612 class class class wbr 5123 (class class class)co 7413 Catccat 17679 Func cfunc 17871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-xp 5671 df-dm 5675 df-iota 6494 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-func 17875 |
| This theorem is referenced by: upciclem2 48951 upciclem3 48952 upeu2 48956 fuco11 49071 fuco11cl 49072 fuco21 49081 fuco11b 49082 fuco11bALT 49083 fuco22natlem2 49088 fuco22natlem 49090 fucoid 49093 fucocolem1 49098 fucolid 49106 fucorid 49107 postcofval 49109 postcofcl 49110 precofval 49112 precofvalALT 49113 precofcl 49115 eufunclem 49219 diag1f1olem 49231 diag2f1olem 49234 |
| Copyright terms: Public domain | W3C validator |