![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcrcl3 | Structured version Visualization version GIF version |
Description: Reverse closure for a functor. (Contributed by Zhi Wang, 17-Sep-2025.) |
Ref | Expression |
---|---|
funcrcl2.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
Ref | Expression |
---|---|
funcrcl3 | ⊢ (𝜑 → 𝐸 ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcrcl2.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
2 | df-br 5169 | . . . 4 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
3 | 2 | biimpi 216 | . . 3 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
4 | funcrcl 17948 | . . 3 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
5 | 1, 3, 4 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
6 | 5 | simprd 495 | 1 ⊢ (𝜑 → 𝐸 ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 〈cop 4655 class class class wbr 5168 (class class class)co 7452 Catccat 17743 Func cfunc 17939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5319 ax-nul 5326 ax-pr 5449 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3445 df-v 3491 df-dif 3980 df-un 3982 df-ss 3994 df-nul 4354 df-if 4550 df-sn 4650 df-pr 4652 df-op 4656 df-uni 4934 df-br 5169 df-opab 5231 df-xp 5708 df-dm 5712 df-iota 6529 df-fv 6585 df-ov 7455 df-oprab 7456 df-mpo 7457 df-func 17943 |
This theorem is referenced by: upciclem2 48777 upciclem3 48778 upeu2 48782 |
Copyright terms: Public domain | W3C validator |