![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uzid3 | Structured version Visualization version GIF version |
Description: Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
uzid3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
uzid3 | ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ (ℤ≥‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzid3.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | 1 | eleq2i 2832 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
3 | 2 | biimpi 216 | . 2 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ (ℤ≥‘𝑀)) |
4 | uzid2 45367 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (ℤ≥‘𝑁)) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ (ℤ≥‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2107 ‘cfv 6566 ℤ≥cuz 12882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-pre-lttri 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-ov 7438 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-neg 11499 df-z 12618 df-uz 12883 |
This theorem is referenced by: cvgcaule 45454 rexanuz2nf 45455 climxlim2lem 45812 |
Copyright terms: Public domain | W3C validator |