![]() |
Mathbox for Matthew House |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > weiunwe | Structured version Visualization version GIF version |
Description: A well-ordering on an indexed union can be constructed from a well-ordering on its index class and a collection of well-orderings on its members. (Contributed by Matthew House, 23-Aug-2025.) |
Ref | Expression |
---|---|
weiun.1 | ⊢ 𝐹 = (𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ (℩𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢)) |
weiun.2 | ⊢ 𝑇 = {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝑦)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧)))} |
Ref | Expression |
---|---|
weiunwe | ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 We 𝐵) → 𝑇 We ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wefr 5683 | . . . 4 ⊢ (𝑆 We 𝐵 → 𝑆 Fr 𝐵) | |
2 | 1 | ralimi 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑆 We 𝐵 → ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) |
3 | weiun.1 | . . . 4 ⊢ 𝐹 = (𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ (℩𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢)) | |
4 | weiun.2 | . . . 4 ⊢ 𝑇 = {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝑦)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧)))} | |
5 | 3, 4 | weiunfr 36462 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) → 𝑇 Fr ∪ 𝑥 ∈ 𝐴 𝐵) |
6 | 2, 5 | syl3an3 1166 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 We 𝐵) → 𝑇 Fr ∪ 𝑥 ∈ 𝐴 𝐵) |
7 | weso 5684 | . . . 4 ⊢ (𝑆 We 𝐵 → 𝑆 Or 𝐵) | |
8 | 7 | ralimi 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑆 We 𝐵 → ∀𝑥 ∈ 𝐴 𝑆 Or 𝐵) |
9 | 3, 4 | weiunso 36461 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Or 𝐵) → 𝑇 Or ∪ 𝑥 ∈ 𝐴 𝐵) |
10 | 8, 9 | syl3an3 1166 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 We 𝐵) → 𝑇 Or ∪ 𝑥 ∈ 𝐴 𝐵) |
11 | df-we 5647 | . 2 ⊢ (𝑇 We ∪ 𝑥 ∈ 𝐴 𝐵 ↔ (𝑇 Fr ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑇 Or ∪ 𝑥 ∈ 𝐴 𝐵)) | |
12 | 6, 10, 11 | sylanbrc 583 | 1 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 We 𝐵) → 𝑇 We ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 848 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ∀wral 3061 {crab 3436 ⦋csb 3911 ∪ ciun 4999 class class class wbr 5151 {copab 5213 ↦ cmpt 5234 Or wor 5600 Fr wfr 5642 Se wse 5643 We wwe 5644 ‘cfv 6569 ℩crio 7394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fv 6577 df-riota 7395 |
This theorem is referenced by: numiunnum 36465 |
Copyright terms: Public domain | W3C validator |