Users' Mathboxes Mathbox for Matthew House < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  weiunwe Structured version   Visualization version   GIF version

Theorem weiunwe 36513
Description: A well-ordering on an indexed union can be constructed from a well-ordering on its index class and a collection of well-orderings on its members. (Contributed by Matthew House, 23-Aug-2025.)
Hypotheses
Ref Expression
weiun.1 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
weiun.2 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
Assertion
Ref Expression
weiunwe ((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝑆 We 𝐵) → 𝑇 We 𝑥𝐴 𝐵)
Distinct variable groups:   𝑢,𝐴,𝑣,𝑤,𝑥   𝑦,𝐴,𝑧,𝑥   𝑢,𝐵,𝑣,𝑤   𝑦,𝐵,𝑧   𝑦,𝐹,𝑧   𝑢,𝑅,𝑣,𝑤   𝑦,𝑅,𝑧   𝑦,𝑆,𝑧
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥,𝑤,𝑣,𝑢)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐹(𝑥,𝑤,𝑣,𝑢)

Proof of Theorem weiunwe
StepHypRef Expression
1 wefr 5604 . . . 4 (𝑆 We 𝐵𝑆 Fr 𝐵)
21ralimi 3069 . . 3 (∀𝑥𝐴 𝑆 We 𝐵 → ∀𝑥𝐴 𝑆 Fr 𝐵)
3 weiun.1 . . . 4 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
4 weiun.2 . . . 4 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
53, 4weiunfr 36511 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝑆 Fr 𝐵) → 𝑇 Fr 𝑥𝐴 𝐵)
62, 5syl3an3 1165 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝑆 We 𝐵) → 𝑇 Fr 𝑥𝐴 𝐵)
7 weso 5605 . . . 4 (𝑆 We 𝐵𝑆 Or 𝐵)
87ralimi 3069 . . 3 (∀𝑥𝐴 𝑆 We 𝐵 → ∀𝑥𝐴 𝑆 Or 𝐵)
93, 4weiunso 36510 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝑆 Or 𝐵) → 𝑇 Or 𝑥𝐴 𝐵)
108, 9syl3an3 1165 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝑆 We 𝐵) → 𝑇 Or 𝑥𝐴 𝐵)
11 df-we 5569 . 2 (𝑇 We 𝑥𝐴 𝐵 ↔ (𝑇 Fr 𝑥𝐴 𝐵𝑇 Or 𝑥𝐴 𝐵))
126, 10, 11sylanbrc 583 1 ((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝑆 We 𝐵) → 𝑇 We 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wral 3047  {crab 3395  csb 3845   ciun 4939   class class class wbr 5089  {copab 5151  cmpt 5170   Or wor 5521   Fr wfr 5564   Se wse 5565   We wwe 5566  cfv 6481  crio 7302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-riota 7303
This theorem is referenced by:  numiunnum  36514
  Copyright terms: Public domain W3C validator