Users' Mathboxes Mathbox for Matthew House < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  numiunnum Structured version   Visualization version   GIF version

Theorem numiunnum 36405
Description: An indexed union of sets is numerable if its index set is numerable and there exists a collection of well-orderings on its members. (Contributed by Matthew House, 23-Aug-2025.)
Assertion
Ref Expression
numiunnum ((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) → 𝑥𝐴 𝐵 ∈ dom card)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem numiunnum
Dummy variables 𝑠 𝑡 𝑢 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac8b 10052 . . . 4 (𝐴 ∈ dom card → ∃𝑠 𝑠 We 𝐴)
21adantr 480 . . 3 ((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) → ∃𝑠 𝑠 We 𝐴)
3 simpll 766 . . . . . . 7 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → 𝐴 ∈ dom card)
4 simplr 768 . . . . . . . . 9 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵))
5 r19.26 3098 . . . . . . . . 9 (∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵) ↔ (∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑥𝐴 𝑆 We 𝐵))
64, 5sylib 218 . . . . . . . 8 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → (∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑥𝐴 𝑆 We 𝐵))
76simpld 494 . . . . . . 7 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → ∀𝑥𝐴 𝐵𝑉)
8 iunexg 7969 . . . . . . 7 ((𝐴 ∈ dom card ∧ ∀𝑥𝐴 𝐵𝑉) → 𝑥𝐴 𝐵 ∈ V)
93, 7, 8syl2anc 584 . . . . . 6 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → 𝑥𝐴 𝐵 ∈ V)
109, 9xpexd 7752 . . . . 5 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐵) ∈ V)
11 opabssxp 5758 . . . . . 6 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} ⊆ ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐵)
1211a1i 11 . . . . 5 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} ⊆ ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐵))
1310, 12ssexd 5304 . . . 4 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} ∈ V)
14 simpr 484 . . . . 5 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → 𝑠 We 𝐴)
15 exse 5625 . . . . . 6 (𝐴 ∈ dom card → 𝑠 Se 𝐴)
1615ad2antrr 726 . . . . 5 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → 𝑠 Se 𝐴)
176simprd 495 . . . . 5 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → ∀𝑥𝐴 𝑆 We 𝐵)
18 eqid 2734 . . . . . 6 (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢)) = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))
19 eqid 2734 . . . . . 6 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))}
2018, 19weiunwe 36404 . . . . 5 ((𝑠 We 𝐴𝑠 Se 𝐴 ∧ ∀𝑥𝐴 𝑆 We 𝐵) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} We 𝑥𝐴 𝐵)
2114, 16, 17, 20syl3anc 1372 . . . 4 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} We 𝑥𝐴 𝐵)
22 weeq1 5652 . . . 4 (𝑡 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} → (𝑡 We 𝑥𝐴 𝐵 ↔ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} We 𝑥𝐴 𝐵))
2313, 21, 22spcedv 3581 . . 3 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → ∃𝑡 𝑡 We 𝑥𝐴 𝐵)
242, 23exlimddv 1934 . 2 ((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) → ∃𝑡 𝑡 We 𝑥𝐴 𝐵)
25 ween 10056 . 2 ( 𝑥𝐴 𝐵 ∈ dom card ↔ ∃𝑡 𝑡 We 𝑥𝐴 𝐵)
2624, 25sylibr 234 1 ((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) → 𝑥𝐴 𝐵 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1539  wex 1778  wcel 2107  wral 3050  {crab 3419  Vcvv 3463  csb 3879  wss 3931   ciun 4971   class class class wbr 5123  {copab 5185  cmpt 5205   Se wse 5615   We wwe 5616   × cxp 5663  dom cdm 5665  cfv 6540  crio 7368  cardccrd 9956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7369  df-ov 7415  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-en 8967  df-card 9960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator