Users' Mathboxes Mathbox for Matthew House < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  numiunnum Structured version   Visualization version   GIF version

Theorem numiunnum 36455
Description: An indexed union of sets is numerable if its index set is numerable and there exists a collection of well-orderings on its members. (Contributed by Matthew House, 23-Aug-2025.)
Assertion
Ref Expression
numiunnum ((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) → 𝑥𝐴 𝐵 ∈ dom card)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem numiunnum
Dummy variables 𝑠 𝑡 𝑢 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac8b 10002 . . . 4 (𝐴 ∈ dom card → ∃𝑠 𝑠 We 𝐴)
21adantr 480 . . 3 ((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) → ∃𝑠 𝑠 We 𝐴)
3 simpll 766 . . . . . . 7 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → 𝐴 ∈ dom card)
4 simplr 768 . . . . . . . . 9 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵))
5 r19.26 3093 . . . . . . . . 9 (∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵) ↔ (∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑥𝐴 𝑆 We 𝐵))
64, 5sylib 218 . . . . . . . 8 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → (∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑥𝐴 𝑆 We 𝐵))
76simpld 494 . . . . . . 7 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → ∀𝑥𝐴 𝐵𝑉)
8 iunexg 7951 . . . . . . 7 ((𝐴 ∈ dom card ∧ ∀𝑥𝐴 𝐵𝑉) → 𝑥𝐴 𝐵 ∈ V)
93, 7, 8syl2anc 584 . . . . . 6 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → 𝑥𝐴 𝐵 ∈ V)
109, 9xpexd 7734 . . . . 5 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐵) ∈ V)
11 opabssxp 5739 . . . . . 6 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} ⊆ ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐵)
1211a1i 11 . . . . 5 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} ⊆ ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐵))
1310, 12ssexd 5287 . . . 4 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} ∈ V)
14 simpr 484 . . . . 5 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → 𝑠 We 𝐴)
15 exse 5606 . . . . . 6 (𝐴 ∈ dom card → 𝑠 Se 𝐴)
1615ad2antrr 726 . . . . 5 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → 𝑠 Se 𝐴)
176simprd 495 . . . . 5 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → ∀𝑥𝐴 𝑆 We 𝐵)
18 eqid 2730 . . . . . 6 (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢)) = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))
19 eqid 2730 . . . . . 6 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))}
2018, 19weiunwe 36454 . . . . 5 ((𝑠 We 𝐴𝑠 Se 𝐴 ∧ ∀𝑥𝐴 𝑆 We 𝐵) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} We 𝑥𝐴 𝐵)
2114, 16, 17, 20syl3anc 1373 . . . 4 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} We 𝑥𝐴 𝐵)
22 weeq1 5633 . . . 4 (𝑡 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} → (𝑡 We 𝑥𝐴 𝐵 ↔ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} We 𝑥𝐴 𝐵))
2313, 21, 22spcedv 3573 . . 3 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → ∃𝑡 𝑡 We 𝑥𝐴 𝐵)
242, 23exlimddv 1935 . 2 ((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) → ∃𝑡 𝑡 We 𝑥𝐴 𝐵)
25 ween 10006 . 2 ( 𝑥𝐴 𝐵 ∈ dom card ↔ ∃𝑡 𝑡 We 𝑥𝐴 𝐵)
2624, 25sylibr 234 1 ((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) → 𝑥𝐴 𝐵 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wral 3046  {crab 3411  Vcvv 3455  csb 3870  wss 3922   ciun 4963   class class class wbr 5115  {copab 5177  cmpt 5196   Se wse 5597   We wwe 5598   × cxp 5644  dom cdm 5646  cfv 6519  crio 7350  cardccrd 9906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528  df-riota 7351  df-ov 7397  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-en 8923  df-card 9910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator