Users' Mathboxes Mathbox for Matthew House < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  numiunnum Structured version   Visualization version   GIF version

Theorem numiunnum 36458
Description: An indexed union of sets is numerable if its index set is numerable and there exists a collection of well-orderings on its members. (Contributed by Matthew House, 23-Aug-2025.)
Assertion
Ref Expression
numiunnum ((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) → 𝑥𝐴 𝐵 ∈ dom card)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem numiunnum
Dummy variables 𝑠 𝑡 𝑢 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac8b 9984 . . . 4 (𝐴 ∈ dom card → ∃𝑠 𝑠 We 𝐴)
21adantr 480 . . 3 ((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) → ∃𝑠 𝑠 We 𝐴)
3 simpll 766 . . . . . . 7 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → 𝐴 ∈ dom card)
4 simplr 768 . . . . . . . . 9 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵))
5 r19.26 3091 . . . . . . . . 9 (∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵) ↔ (∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑥𝐴 𝑆 We 𝐵))
64, 5sylib 218 . . . . . . . 8 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → (∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑥𝐴 𝑆 We 𝐵))
76simpld 494 . . . . . . 7 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → ∀𝑥𝐴 𝐵𝑉)
8 iunexg 7942 . . . . . . 7 ((𝐴 ∈ dom card ∧ ∀𝑥𝐴 𝐵𝑉) → 𝑥𝐴 𝐵 ∈ V)
93, 7, 8syl2anc 584 . . . . . 6 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → 𝑥𝐴 𝐵 ∈ V)
109, 9xpexd 7727 . . . . 5 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐵) ∈ V)
11 opabssxp 5731 . . . . . 6 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} ⊆ ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐵)
1211a1i 11 . . . . 5 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} ⊆ ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐵))
1310, 12ssexd 5279 . . . 4 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} ∈ V)
14 simpr 484 . . . . 5 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → 𝑠 We 𝐴)
15 exse 5598 . . . . . 6 (𝐴 ∈ dom card → 𝑠 Se 𝐴)
1615ad2antrr 726 . . . . 5 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → 𝑠 Se 𝐴)
176simprd 495 . . . . 5 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → ∀𝑥𝐴 𝑆 We 𝐵)
18 eqid 2729 . . . . . 6 (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢)) = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))
19 eqid 2729 . . . . . 6 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))}
2018, 19weiunwe 36457 . . . . 5 ((𝑠 We 𝐴𝑠 Se 𝐴 ∧ ∀𝑥𝐴 𝑆 We 𝐵) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} We 𝑥𝐴 𝐵)
2114, 16, 17, 20syl3anc 1373 . . . 4 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} We 𝑥𝐴 𝐵)
22 weeq1 5625 . . . 4 (𝑡 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} → (𝑡 We 𝑥𝐴 𝐵 ↔ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} We 𝑥𝐴 𝐵))
2313, 21, 22spcedv 3564 . . 3 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → ∃𝑡 𝑡 We 𝑥𝐴 𝐵)
242, 23exlimddv 1935 . 2 ((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) → ∃𝑡 𝑡 We 𝑥𝐴 𝐵)
25 ween 9988 . 2 ( 𝑥𝐴 𝐵 ∈ dom card ↔ ∃𝑡 𝑡 We 𝑥𝐴 𝐵)
2624, 25sylibr 234 1 ((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) → 𝑥𝐴 𝐵 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  csb 3862  wss 3914   ciun 4955   class class class wbr 5107  {copab 5169  cmpt 5188   Se wse 5589   We wwe 5590   × cxp 5636  dom cdm 5638  cfv 6511  crio 7343  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-en 8919  df-card 9892
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator