Users' Mathboxes Mathbox for Matthew House < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  numiunnum Structured version   Visualization version   GIF version

Theorem numiunnum 36443
Description: An indexed union of sets is numerable if its index set is numerable and there exists a collection of well-orderings on its members. (Contributed by Matthew House, 23-Aug-2025.)
Assertion
Ref Expression
numiunnum ((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) → 𝑥𝐴 𝐵 ∈ dom card)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem numiunnum
Dummy variables 𝑠 𝑡 𝑢 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac8b 9944 . . . 4 (𝐴 ∈ dom card → ∃𝑠 𝑠 We 𝐴)
21adantr 480 . . 3 ((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) → ∃𝑠 𝑠 We 𝐴)
3 simpll 766 . . . . . . 7 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → 𝐴 ∈ dom card)
4 simplr 768 . . . . . . . . 9 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵))
5 r19.26 3089 . . . . . . . . 9 (∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵) ↔ (∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑥𝐴 𝑆 We 𝐵))
64, 5sylib 218 . . . . . . . 8 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → (∀𝑥𝐴 𝐵𝑉 ∧ ∀𝑥𝐴 𝑆 We 𝐵))
76simpld 494 . . . . . . 7 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → ∀𝑥𝐴 𝐵𝑉)
8 iunexg 7905 . . . . . . 7 ((𝐴 ∈ dom card ∧ ∀𝑥𝐴 𝐵𝑉) → 𝑥𝐴 𝐵 ∈ V)
93, 7, 8syl2anc 584 . . . . . 6 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → 𝑥𝐴 𝐵 ∈ V)
109, 9xpexd 7691 . . . . 5 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐵) ∈ V)
11 opabssxp 5715 . . . . . 6 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} ⊆ ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐵)
1211a1i 11 . . . . 5 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} ⊆ ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐵))
1310, 12ssexd 5266 . . . 4 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} ∈ V)
14 simpr 484 . . . . 5 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → 𝑠 We 𝐴)
15 exse 5583 . . . . . 6 (𝐴 ∈ dom card → 𝑠 Se 𝐴)
1615ad2antrr 726 . . . . 5 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → 𝑠 Se 𝐴)
176simprd 495 . . . . 5 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → ∀𝑥𝐴 𝑆 We 𝐵)
18 eqid 2729 . . . . . 6 (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢)) = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))
19 eqid 2729 . . . . . 6 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))}
2018, 19weiunwe 36442 . . . . 5 ((𝑠 We 𝐴𝑠 Se 𝐴 ∧ ∀𝑥𝐴 𝑆 We 𝐵) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} We 𝑥𝐴 𝐵)
2114, 16, 17, 20syl3anc 1373 . . . 4 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} We 𝑥𝐴 𝐵)
22 weeq1 5610 . . . 4 (𝑡 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} → (𝑡 We 𝑥𝐴 𝐵 ↔ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦)𝑠((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∨ (((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) = ((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑧) ∧ 𝑦((𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑠𝑢))‘𝑦) / 𝑥𝑆𝑧)))} We 𝑥𝐴 𝐵))
2313, 21, 22spcedv 3555 . . 3 (((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) ∧ 𝑠 We 𝐴) → ∃𝑡 𝑡 We 𝑥𝐴 𝐵)
242, 23exlimddv 1935 . 2 ((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) → ∃𝑡 𝑡 We 𝑥𝐴 𝐵)
25 ween 9948 . 2 ( 𝑥𝐴 𝐵 ∈ dom card ↔ ∃𝑡 𝑡 We 𝑥𝐴 𝐵)
2624, 25sylibr 234 1 ((𝐴 ∈ dom card ∧ ∀𝑥𝐴 (𝐵𝑉𝑆 We 𝐵)) → 𝑥𝐴 𝐵 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  csb 3853  wss 3905   ciun 4944   class class class wbr 5095  {copab 5157  cmpt 5176   Se wse 5574   We wwe 5575   × cxp 5621  dom cdm 5623  cfv 6486  crio 7309  cardccrd 9850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-en 8880  df-card 9854
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator