MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsnon Structured version   Visualization version   GIF version

Theorem wspthsnon 26968
Description: The set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
Hypothesis
Ref Expression
wwlksnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wspthsnon ((𝑁 ∈ ℕ0𝐺𝑈) → (𝑁 WSPathsNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
Distinct variable groups:   𝐺,𝑎,𝑏,𝑤   𝑁,𝑎,𝑏,𝑤   𝑉,𝑎,𝑏   𝑓,𝐺,𝑎,𝑏,𝑤   𝑓,𝑁
Allowed substitution hints:   𝑈(𝑤,𝑓,𝑎,𝑏)   𝑉(𝑤,𝑓)

Proof of Theorem wspthsnon
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wspthsnon 26949 . . 3 WSPathsNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤}))
21a1i 11 . 2 ((𝑁 ∈ ℕ0𝐺𝑈) → WSPathsNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤})))
3 fveq2 6402 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
4 wwlksnon.v . . . . . 6 𝑉 = (Vtx‘𝐺)
53, 4syl6eqr 2854 . . . . 5 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
65adantl 469 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → (Vtx‘𝑔) = 𝑉)
7 oveq12 6877 . . . . . 6 ((𝑛 = 𝑁𝑔 = 𝐺) → (𝑛 WWalksNOn 𝑔) = (𝑁 WWalksNOn 𝐺))
87oveqd 6885 . . . . 5 ((𝑛 = 𝑁𝑔 = 𝐺) → (𝑎(𝑛 WWalksNOn 𝑔)𝑏) = (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
9 fveq2 6402 . . . . . . . . 9 (𝑔 = 𝐺 → (SPathsOn‘𝑔) = (SPathsOn‘𝐺))
109oveqd 6885 . . . . . . . 8 (𝑔 = 𝐺 → (𝑎(SPathsOn‘𝑔)𝑏) = (𝑎(SPathsOn‘𝐺)𝑏))
1110breqd 4848 . . . . . . 7 (𝑔 = 𝐺 → (𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤))
1211adantl 469 . . . . . 6 ((𝑛 = 𝑁𝑔 = 𝐺) → (𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤))
1312exbidv 2012 . . . . 5 ((𝑛 = 𝑁𝑔 = 𝐺) → (∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤 ↔ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤))
148, 13rabeqbidv 3381 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤} = {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})
156, 6, 14mpt2eq123dv 6941 . . 3 ((𝑛 = 𝑁𝑔 = 𝐺) → (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤}) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
1615adantl 469 . 2 (((𝑁 ∈ ℕ0𝐺𝑈) ∧ (𝑛 = 𝑁𝑔 = 𝐺)) → (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤}) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
17 simpl 470 . 2 ((𝑁 ∈ ℕ0𝐺𝑈) → 𝑁 ∈ ℕ0)
18 elex 3402 . . 3 (𝐺𝑈𝐺 ∈ V)
1918adantl 469 . 2 ((𝑁 ∈ ℕ0𝐺𝑈) → 𝐺 ∈ V)
204fvexi 6416 . . . 4 𝑉 ∈ V
2120, 20mpt2ex 7474 . . 3 (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}) ∈ V
2221a1i 11 . 2 ((𝑁 ∈ ℕ0𝐺𝑈) → (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}) ∈ V)
232, 16, 17, 19, 22ovmpt2d 7012 1 ((𝑁 ∈ ℕ0𝐺𝑈) → (𝑁 WSPathsNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wex 1859  wcel 2155  {crab 3096  Vcvv 3387   class class class wbr 4837  cfv 6095  (class class class)co 6868  cmpt2 6870  0cn0 11553  Vtxcvtx 26082  SPathsOncspthson 26833   WWalksNOn cwwlksnon 26942   WSPathsNOn cwwspthsnon 26944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-rep 4957  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-ral 3097  df-rex 3098  df-reu 3099  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-op 4371  df-uni 4624  df-iun 4707  df-br 4838  df-opab 4900  df-mpt 4917  df-id 5213  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-ov 6871  df-oprab 6872  df-mpt2 6873  df-1st 7392  df-2nd 7393  df-wspthsnon 26949
This theorem is referenced by:  iswspthsnon  26973  iswspthsnonOLD  26974
  Copyright terms: Public domain W3C validator