MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsnon Structured version   Visualization version   GIF version

Theorem wspthsnon 29830
Description: The set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
Hypothesis
Ref Expression
wwlksnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wspthsnon ((𝑁 ∈ ℕ0𝐺𝑈) → (𝑁 WSPathsNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
Distinct variable groups:   𝐺,𝑎,𝑏,𝑤   𝑁,𝑎,𝑏,𝑤   𝑉,𝑎,𝑏   𝑓,𝐺,𝑎,𝑏,𝑤   𝑓,𝑁
Allowed substitution hints:   𝑈(𝑤,𝑓,𝑎,𝑏)   𝑉(𝑤,𝑓)

Proof of Theorem wspthsnon
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wspthsnon 29812 . . 3 WSPathsNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤}))
21a1i 11 . 2 ((𝑁 ∈ ℕ0𝐺𝑈) → WSPathsNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤})))
3 fveq2 6822 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
4 wwlksnon.v . . . . . 6 𝑉 = (Vtx‘𝐺)
53, 4eqtr4di 2784 . . . . 5 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
65adantl 481 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → (Vtx‘𝑔) = 𝑉)
7 oveq12 7355 . . . . . 6 ((𝑛 = 𝑁𝑔 = 𝐺) → (𝑛 WWalksNOn 𝑔) = (𝑁 WWalksNOn 𝐺))
87oveqd 7363 . . . . 5 ((𝑛 = 𝑁𝑔 = 𝐺) → (𝑎(𝑛 WWalksNOn 𝑔)𝑏) = (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
9 fveq2 6822 . . . . . . . . 9 (𝑔 = 𝐺 → (SPathsOn‘𝑔) = (SPathsOn‘𝐺))
109oveqd 7363 . . . . . . . 8 (𝑔 = 𝐺 → (𝑎(SPathsOn‘𝑔)𝑏) = (𝑎(SPathsOn‘𝐺)𝑏))
1110breqd 5100 . . . . . . 7 (𝑔 = 𝐺 → (𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤))
1211adantl 481 . . . . . 6 ((𝑛 = 𝑁𝑔 = 𝐺) → (𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤))
1312exbidv 1922 . . . . 5 ((𝑛 = 𝑁𝑔 = 𝐺) → (∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤 ↔ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤))
148, 13rabeqbidv 3413 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤} = {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤})
156, 6, 14mpoeq123dv 7421 . . 3 ((𝑛 = 𝑁𝑔 = 𝐺) → (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤}) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
1615adantl 481 . 2 (((𝑁 ∈ ℕ0𝐺𝑈) ∧ (𝑛 = 𝑁𝑔 = 𝐺)) → (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤}) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
17 simpl 482 . 2 ((𝑁 ∈ ℕ0𝐺𝑈) → 𝑁 ∈ ℕ0)
18 elex 3457 . . 3 (𝐺𝑈𝐺 ∈ V)
1918adantl 481 . 2 ((𝑁 ∈ ℕ0𝐺𝑈) → 𝐺 ∈ V)
204fvexi 6836 . . . 4 𝑉 ∈ V
2120, 20mpoex 8011 . . 3 (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}) ∈ V
2221a1i 11 . 2 ((𝑁 ∈ ℕ0𝐺𝑈) → (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}) ∈ V)
232, 16, 17, 19, 22ovmpod 7498 1 ((𝑁 ∈ ℕ0𝐺𝑈) → (𝑁 WSPathsNOn 𝐺) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑤 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑤}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  {crab 3395  Vcvv 3436   class class class wbr 5089  cfv 6481  (class class class)co 7346  cmpo 7348  0cn0 12381  Vtxcvtx 28974  SPathsOncspthson 29691   WWalksNOn cwwlksnon 29805   WSPathsNOn cwwspthsnon 29807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-wspthsnon 29812
This theorem is referenced by:  iswspthsnon  29834
  Copyright terms: Public domain W3C validator