MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xbln0 Structured version   Visualization version   GIF version

Theorem xbln0 24264
Description: A ball is nonempty iff the radius is positive. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xbln0 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ ((𝑃(ballβ€˜π·)𝑅) β‰  βˆ… ↔ 0 < 𝑅))

Proof of Theorem xbln0
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 n0 4339 . . 3 ((𝑃(ballβ€˜π·)𝑅) β‰  βˆ… ↔ βˆƒπ‘₯ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅))
2 elbl 24238 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅) ↔ (π‘₯ ∈ 𝑋 ∧ (𝑃𝐷π‘₯) < 𝑅)))
3 xmetge0 24194 . . . . . . . . 9 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋) β†’ 0 ≀ (𝑃𝐷π‘₯))
433expa 1115 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ 𝑋) β†’ 0 ≀ (𝑃𝐷π‘₯))
543adantl3 1165 . . . . . . 7 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ π‘₯ ∈ 𝑋) β†’ 0 ≀ (𝑃𝐷π‘₯))
6 0xr 11260 . . . . . . . 8 0 ∈ ℝ*
7 xmetcl 24181 . . . . . . . . . 10 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋) β†’ (𝑃𝐷π‘₯) ∈ ℝ*)
873expa 1115 . . . . . . . . 9 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) ∧ π‘₯ ∈ 𝑋) β†’ (𝑃𝐷π‘₯) ∈ ℝ*)
983adantl3 1165 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ π‘₯ ∈ 𝑋) β†’ (𝑃𝐷π‘₯) ∈ ℝ*)
10 simpl3 1190 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ π‘₯ ∈ 𝑋) β†’ 𝑅 ∈ ℝ*)
11 xrlelttr 13136 . . . . . . . 8 ((0 ∈ ℝ* ∧ (𝑃𝐷π‘₯) ∈ ℝ* ∧ 𝑅 ∈ ℝ*) β†’ ((0 ≀ (𝑃𝐷π‘₯) ∧ (𝑃𝐷π‘₯) < 𝑅) β†’ 0 < 𝑅))
126, 9, 10, 11mp3an2i 1462 . . . . . . 7 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ π‘₯ ∈ 𝑋) β†’ ((0 ≀ (𝑃𝐷π‘₯) ∧ (𝑃𝐷π‘₯) < 𝑅) β†’ 0 < 𝑅))
135, 12mpand 692 . . . . . 6 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ π‘₯ ∈ 𝑋) β†’ ((𝑃𝐷π‘₯) < 𝑅 β†’ 0 < 𝑅))
1413expimpd 453 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ ((π‘₯ ∈ 𝑋 ∧ (𝑃𝐷π‘₯) < 𝑅) β†’ 0 < 𝑅))
152, 14sylbid 239 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅) β†’ 0 < 𝑅))
1615exlimdv 1928 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (βˆƒπ‘₯ π‘₯ ∈ (𝑃(ballβ€˜π·)𝑅) β†’ 0 < 𝑅))
171, 16biimtrid 241 . 2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ ((𝑃(ballβ€˜π·)𝑅) β‰  βˆ… β†’ 0 < 𝑅))
18 xblcntr 24261 . . . . . 6 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) β†’ 𝑃 ∈ (𝑃(ballβ€˜π·)𝑅))
1918ne0d 4328 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) β†’ (𝑃(ballβ€˜π·)𝑅) β‰  βˆ…)
20193expa 1115 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) β†’ (𝑃(ballβ€˜π·)𝑅) β‰  βˆ…)
2120expr 456 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) β†’ (0 < 𝑅 β†’ (𝑃(ballβ€˜π·)𝑅) β‰  βˆ…))
22213impa 1107 . 2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (0 < 𝑅 β†’ (𝑃(ballβ€˜π·)𝑅) β‰  βˆ…))
2317, 22impbid 211 1 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ ((𝑃(ballβ€˜π·)𝑅) β‰  βˆ… ↔ 0 < 𝑅))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084  βˆƒwex 1773   ∈ wcel 2098   β‰  wne 2932  βˆ…c0 4315   class class class wbr 5139  β€˜cfv 6534  (class class class)co 7402  0cc0 11107  β„*cxr 11246   < clt 11247   ≀ cle 11248  βˆžMetcxmet 21219  ballcbl 21221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-po 5579  df-so 5580  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-1st 7969  df-2nd 7970  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-2 12274  df-rp 12976  df-xneg 13093  df-xadd 13094  df-xmul 13095  df-psmet 21226  df-xmet 21227  df-bl 21229
This theorem is referenced by:  prdsxmslem2  24382  blssioo  24655  metdstri  24711  blbnd  37159  prdsbnd2  37167
  Copyright terms: Public domain W3C validator