MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xbln0 Structured version   Visualization version   GIF version

Theorem xbln0 23475
Description: A ball is nonempty iff the radius is positive. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xbln0 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((𝑃(ball‘𝐷)𝑅) ≠ ∅ ↔ 0 < 𝑅))

Proof of Theorem xbln0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0 4277 . . 3 ((𝑃(ball‘𝐷)𝑅) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))
2 elbl 23449 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
3 xmetge0 23405 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → 0 ≤ (𝑃𝐷𝑥))
433expa 1116 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑥𝑋) → 0 ≤ (𝑃𝐷𝑥))
543adantl3 1166 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑥𝑋) → 0 ≤ (𝑃𝐷𝑥))
6 0xr 10953 . . . . . . . 8 0 ∈ ℝ*
7 xmetcl 23392 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
873expa 1116 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
983adantl3 1166 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
10 simpl3 1191 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ*)
11 xrlelttr 12819 . . . . . . . 8 ((0 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ*𝑅 ∈ ℝ*) → ((0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅) → 0 < 𝑅))
126, 9, 10, 11mp3an2i 1464 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑥𝑋) → ((0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅) → 0 < 𝑅))
135, 12mpand 691 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) < 𝑅 → 0 < 𝑅))
1413expimpd 453 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 0 < 𝑅))
152, 14sylbid 239 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) → 0 < 𝑅))
1615exlimdv 1937 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅) → 0 < 𝑅))
171, 16syl5bi 241 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((𝑃(ball‘𝐷)𝑅) ≠ ∅ → 0 < 𝑅))
18 xblcntr 23472 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
1918ne0d 4266 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → (𝑃(ball‘𝐷)𝑅) ≠ ∅)
20193expa 1116 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → (𝑃(ball‘𝐷)𝑅) ≠ ∅)
2120expr 456 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑅 ∈ ℝ*) → (0 < 𝑅 → (𝑃(ball‘𝐷)𝑅) ≠ ∅))
22213impa 1108 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (0 < 𝑅 → (𝑃(ball‘𝐷)𝑅) ≠ ∅))
2317, 22impbid 211 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((𝑃(ball‘𝐷)𝑅) ≠ ∅ ↔ 0 < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wex 1783  wcel 2108  wne 2942  c0 4253   class class class wbr 5070  cfv 6418  (class class class)co 7255  0cc0 10802  *cxr 10939   < clt 10940  cle 10941  ∞Metcxmet 20495  ballcbl 20497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-psmet 20502  df-xmet 20503  df-bl 20505
This theorem is referenced by:  prdsxmslem2  23591  blssioo  23864  metdstri  23920  blbnd  35872  prdsbnd2  35880
  Copyright terms: Public domain W3C validator