MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xlemnf Structured version   Visualization version   GIF version

Theorem xlemnf 12901
Description: An extended real which is less than minus infinity is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.)
Assertion
Ref Expression
xlemnf (𝐴 ∈ ℝ* → (𝐴 ≤ -∞ ↔ 𝐴 = -∞))

Proof of Theorem xlemnf
StepHypRef Expression
1 mnfxr 11032 . . 3 -∞ ∈ ℝ*
2 xrlenlt 11040 . . 3 ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝐴 ≤ -∞ ↔ ¬ -∞ < 𝐴))
31, 2mpan2 688 . 2 (𝐴 ∈ ℝ* → (𝐴 ≤ -∞ ↔ ¬ -∞ < 𝐴))
4 ngtmnft 12900 . 2 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
53, 4bitr4d 281 1 (𝐴 ∈ ℝ* → (𝐴 ≤ -∞ ↔ 𝐴 = -∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wcel 2106   class class class wbr 5074  -∞cmnf 11007  *cxr 11008   < clt 11009  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015
This theorem is referenced by:  infxrmnf  13071  liminflbuz2  43356
  Copyright terms: Public domain W3C validator