![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xlemnf | Structured version Visualization version GIF version |
Description: An extended real which is less than minus infinity is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) |
Ref | Expression |
---|---|
xlemnf | ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ -∞ ↔ 𝐴 = -∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 10421 | . . 3 ⊢ -∞ ∈ ℝ* | |
2 | xrlenlt 10429 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝐴 ≤ -∞ ↔ ¬ -∞ < 𝐴)) | |
3 | 1, 2 | mpan2 682 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ -∞ ↔ ¬ -∞ < 𝐴)) |
4 | ngtmnft 12292 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) | |
5 | 3, 4 | bitr4d 274 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ -∞ ↔ 𝐴 = -∞)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 = wceq 1656 ∈ wcel 2164 class class class wbr 4875 -∞cmnf 10396 ℝ*cxr 10397 < clt 10398 ≤ cle 10399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-pre-lttri 10333 ax-pre-lttrn 10334 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-po 5265 df-so 5266 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 |
This theorem is referenced by: infxrmnf 12462 |
Copyright terms: Public domain | W3C validator |