| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngtmnft | Structured version Visualization version GIF version | ||
| Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| ngtmnft | ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11178 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 2 | xrltnr 13022 | . . . 4 ⊢ (-∞ ∈ ℝ* → ¬ -∞ < -∞) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ¬ -∞ < -∞ |
| 4 | breq2 5099 | . . 3 ⊢ (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞)) | |
| 5 | 3, 4 | mtbiri 327 | . 2 ⊢ (𝐴 = -∞ → ¬ -∞ < 𝐴) |
| 6 | mnfle 13038 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) | |
| 7 | xrleloe 13047 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴))) | |
| 8 | 1, 7 | mpan 690 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴))) |
| 9 | 6, 8 | mpbid 232 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (-∞ < 𝐴 ∨ -∞ = 𝐴)) |
| 10 | 9 | ord 864 | . . 3 ⊢ (𝐴 ∈ ℝ* → (¬ -∞ < 𝐴 → -∞ = 𝐴)) |
| 11 | eqcom 2740 | . . 3 ⊢ (-∞ = 𝐴 ↔ 𝐴 = -∞) | |
| 12 | 10, 11 | imbitrdi 251 | . 2 ⊢ (𝐴 ∈ ℝ* → (¬ -∞ < 𝐴 → 𝐴 = -∞)) |
| 13 | 5, 12 | impbid2 226 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 -∞cmnf 11153 ℝ*cxr 11154 < clt 11155 ≤ cle 11156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-pre-lttri 11089 ax-pre-lttrn 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 |
| This theorem is referenced by: xlemnf 13070 xrrebnd 13071 ge0nemnf 13076 xlt2add 13163 xrsdsreclblem 21353 xblpnfps 24313 xblpnf 24314 supxrnemnf 32757 itg2addnclem 37734 supxrgelem 45463 supxrge 45464 nemnftgtmnft 45470 infxrbnd2 45494 |
| Copyright terms: Public domain | W3C validator |