MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngtmnft Structured version   Visualization version   GIF version

Theorem ngtmnft 13065
Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
ngtmnft (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))

Proof of Theorem ngtmnft
StepHypRef Expression
1 mnfxr 11169 . . . 4 -∞ ∈ ℝ*
2 xrltnr 13018 . . . 4 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
31, 2ax-mp 5 . . 3 ¬ -∞ < -∞
4 breq2 5095 . . 3 (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞))
53, 4mtbiri 327 . 2 (𝐴 = -∞ → ¬ -∞ < 𝐴)
6 mnfle 13034 . . . . 5 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
7 xrleloe 13043 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴)))
81, 7mpan 690 . . . . 5 (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴)))
96, 8mpbid 232 . . . 4 (𝐴 ∈ ℝ* → (-∞ < 𝐴 ∨ -∞ = 𝐴))
109ord 864 . . 3 (𝐴 ∈ ℝ* → (¬ -∞ < 𝐴 → -∞ = 𝐴))
11 eqcom 2738 . . 3 (-∞ = 𝐴𝐴 = -∞)
1210, 11imbitrdi 251 . 2 (𝐴 ∈ ℝ* → (¬ -∞ < 𝐴𝐴 = -∞))
135, 12impbid2 226 1 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1541  wcel 2111   class class class wbr 5091  -∞cmnf 11144  *cxr 11145   < clt 11146  cle 11147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152
This theorem is referenced by:  xlemnf  13066  xrrebnd  13067  ge0nemnf  13072  xlt2add  13159  xrsdsreclblem  21350  xblpnfps  24311  xblpnf  24312  supxrnemnf  32749  itg2addnclem  37717  supxrgelem  45382  supxrge  45383  nemnftgtmnft  45389  infxrbnd2  45413
  Copyright terms: Public domain W3C validator