MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngtmnft Structured version   Visualization version   GIF version

Theorem ngtmnft 12900
Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
ngtmnft (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))

Proof of Theorem ngtmnft
StepHypRef Expression
1 mnfxr 11032 . . . 4 -∞ ∈ ℝ*
2 xrltnr 12855 . . . 4 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
31, 2ax-mp 5 . . 3 ¬ -∞ < -∞
4 breq2 5078 . . 3 (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞))
53, 4mtbiri 327 . 2 (𝐴 = -∞ → ¬ -∞ < 𝐴)
6 mnfle 12870 . . . . 5 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
7 xrleloe 12878 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴)))
81, 7mpan 687 . . . . 5 (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴)))
96, 8mpbid 231 . . . 4 (𝐴 ∈ ℝ* → (-∞ < 𝐴 ∨ -∞ = 𝐴))
109ord 861 . . 3 (𝐴 ∈ ℝ* → (¬ -∞ < 𝐴 → -∞ = 𝐴))
11 eqcom 2745 . . 3 (-∞ = 𝐴𝐴 = -∞)
1210, 11syl6ib 250 . 2 (𝐴 ∈ ℝ* → (¬ -∞ < 𝐴𝐴 = -∞))
135, 12impbid2 225 1 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 844   = wceq 1539  wcel 2106   class class class wbr 5074  -∞cmnf 11007  *cxr 11008   < clt 11009  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015
This theorem is referenced by:  xlemnf  12901  xrrebnd  12902  ge0nemnf  12907  xlt2add  12994  xrsdsreclblem  20644  xblpnfps  23548  xblpnf  23549  supxrnemnf  31091  itg2addnclem  35828  supxrgelem  42876  supxrge  42877  nemnftgtmnft  42883  infxrbnd2  42908
  Copyright terms: Public domain W3C validator