MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngtmnft Structured version   Visualization version   GIF version

Theorem ngtmnft 13126
Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
ngtmnft (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))

Proof of Theorem ngtmnft
StepHypRef Expression
1 mnfxr 11231 . . . 4 -∞ ∈ ℝ*
2 xrltnr 13079 . . . 4 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
31, 2ax-mp 5 . . 3 ¬ -∞ < -∞
4 breq2 5111 . . 3 (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞))
53, 4mtbiri 327 . 2 (𝐴 = -∞ → ¬ -∞ < 𝐴)
6 mnfle 13095 . . . . 5 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
7 xrleloe 13104 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴)))
81, 7mpan 690 . . . . 5 (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴)))
96, 8mpbid 232 . . . 4 (𝐴 ∈ ℝ* → (-∞ < 𝐴 ∨ -∞ = 𝐴))
109ord 864 . . 3 (𝐴 ∈ ℝ* → (¬ -∞ < 𝐴 → -∞ = 𝐴))
11 eqcom 2736 . . 3 (-∞ = 𝐴𝐴 = -∞)
1210, 11imbitrdi 251 . 2 (𝐴 ∈ ℝ* → (¬ -∞ < 𝐴𝐴 = -∞))
135, 12impbid2 226 1 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109   class class class wbr 5107  -∞cmnf 11206  *cxr 11207   < clt 11208  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214
This theorem is referenced by:  xlemnf  13127  xrrebnd  13128  ge0nemnf  13133  xlt2add  13220  xrsdsreclblem  21329  xblpnfps  24283  xblpnf  24284  supxrnemnf  32691  itg2addnclem  37665  supxrgelem  45333  supxrge  45334  nemnftgtmnft  45340  infxrbnd2  45365
  Copyright terms: Public domain W3C validator