MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngtmnft Structured version   Visualization version   GIF version

Theorem ngtmnft 13149
Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
ngtmnft (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))

Proof of Theorem ngtmnft
StepHypRef Expression
1 mnfxr 11275 . . . 4 -∞ ∈ ℝ*
2 xrltnr 13103 . . . 4 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
31, 2ax-mp 5 . . 3 ¬ -∞ < -∞
4 breq2 5151 . . 3 (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞))
53, 4mtbiri 326 . 2 (𝐴 = -∞ → ¬ -∞ < 𝐴)
6 mnfle 13118 . . . . 5 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
7 xrleloe 13127 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴)))
81, 7mpan 686 . . . . 5 (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴)))
96, 8mpbid 231 . . . 4 (𝐴 ∈ ℝ* → (-∞ < 𝐴 ∨ -∞ = 𝐴))
109ord 860 . . 3 (𝐴 ∈ ℝ* → (¬ -∞ < 𝐴 → -∞ = 𝐴))
11 eqcom 2737 . . 3 (-∞ = 𝐴𝐴 = -∞)
1210, 11imbitrdi 250 . 2 (𝐴 ∈ ℝ* → (¬ -∞ < 𝐴𝐴 = -∞))
135, 12impbid2 225 1 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 843   = wceq 1539  wcel 2104   class class class wbr 5147  -∞cmnf 11250  *cxr 11251   < clt 11252  cle 11253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-pre-lttri 11186  ax-pre-lttrn 11187
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258
This theorem is referenced by:  xlemnf  13150  xrrebnd  13151  ge0nemnf  13156  xlt2add  13243  xrsdsreclblem  21191  xblpnfps  24121  xblpnf  24122  supxrnemnf  32248  itg2addnclem  36842  supxrgelem  44345  supxrge  44346  nemnftgtmnft  44352  infxrbnd2  44377
  Copyright terms: Public domain W3C validator