Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ngtmnft | Structured version Visualization version GIF version |
Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.) |
Ref | Expression |
---|---|
ngtmnft | ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 11032 | . . . 4 ⊢ -∞ ∈ ℝ* | |
2 | xrltnr 12855 | . . . 4 ⊢ (-∞ ∈ ℝ* → ¬ -∞ < -∞) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ¬ -∞ < -∞ |
4 | breq2 5078 | . . 3 ⊢ (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞)) | |
5 | 3, 4 | mtbiri 327 | . 2 ⊢ (𝐴 = -∞ → ¬ -∞ < 𝐴) |
6 | mnfle 12870 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) | |
7 | xrleloe 12878 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴))) | |
8 | 1, 7 | mpan 687 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴))) |
9 | 6, 8 | mpbid 231 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (-∞ < 𝐴 ∨ -∞ = 𝐴)) |
10 | 9 | ord 861 | . . 3 ⊢ (𝐴 ∈ ℝ* → (¬ -∞ < 𝐴 → -∞ = 𝐴)) |
11 | eqcom 2745 | . . 3 ⊢ (-∞ = 𝐴 ↔ 𝐴 = -∞) | |
12 | 10, 11 | syl6ib 250 | . 2 ⊢ (𝐴 ∈ ℝ* → (¬ -∞ < 𝐴 → 𝐴 = -∞)) |
13 | 5, 12 | impbid2 225 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 844 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 -∞cmnf 11007 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 |
This theorem is referenced by: xlemnf 12901 xrrebnd 12902 ge0nemnf 12907 xlt2add 12994 xrsdsreclblem 20644 xblpnfps 23548 xblpnf 23549 supxrnemnf 31091 itg2addnclem 35828 supxrgelem 42876 supxrge 42877 nemnftgtmnft 42883 infxrbnd2 42908 |
Copyright terms: Public domain | W3C validator |