| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngtmnft | Structured version Visualization version GIF version | ||
| Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| ngtmnft | ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11318 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 2 | xrltnr 13161 | . . . 4 ⊢ (-∞ ∈ ℝ* → ¬ -∞ < -∞) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ¬ -∞ < -∞ |
| 4 | breq2 5147 | . . 3 ⊢ (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞)) | |
| 5 | 3, 4 | mtbiri 327 | . 2 ⊢ (𝐴 = -∞ → ¬ -∞ < 𝐴) |
| 6 | mnfle 13177 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) | |
| 7 | xrleloe 13186 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴))) | |
| 8 | 1, 7 | mpan 690 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴))) |
| 9 | 6, 8 | mpbid 232 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (-∞ < 𝐴 ∨ -∞ = 𝐴)) |
| 10 | 9 | ord 865 | . . 3 ⊢ (𝐴 ∈ ℝ* → (¬ -∞ < 𝐴 → -∞ = 𝐴)) |
| 11 | eqcom 2744 | . . 3 ⊢ (-∞ = 𝐴 ↔ 𝐴 = -∞) | |
| 12 | 10, 11 | imbitrdi 251 | . 2 ⊢ (𝐴 ∈ ℝ* → (¬ -∞ < 𝐴 → 𝐴 = -∞)) |
| 13 | 5, 12 | impbid2 226 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 848 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 -∞cmnf 11293 ℝ*cxr 11294 < clt 11295 ≤ cle 11296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-pre-lttri 11229 ax-pre-lttrn 11230 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 |
| This theorem is referenced by: xlemnf 13209 xrrebnd 13210 ge0nemnf 13215 xlt2add 13302 xrsdsreclblem 21430 xblpnfps 24405 xblpnf 24406 supxrnemnf 32772 itg2addnclem 37678 supxrgelem 45348 supxrge 45349 nemnftgtmnft 45355 infxrbnd2 45380 |
| Copyright terms: Public domain | W3C validator |