| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngtmnft | Structured version Visualization version GIF version | ||
| Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| ngtmnft | ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11191 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 2 | xrltnr 13039 | . . . 4 ⊢ (-∞ ∈ ℝ* → ¬ -∞ < -∞) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ¬ -∞ < -∞ |
| 4 | breq2 5099 | . . 3 ⊢ (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞)) | |
| 5 | 3, 4 | mtbiri 327 | . 2 ⊢ (𝐴 = -∞ → ¬ -∞ < 𝐴) |
| 6 | mnfle 13055 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) | |
| 7 | xrleloe 13064 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴))) | |
| 8 | 1, 7 | mpan 690 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ (-∞ < 𝐴 ∨ -∞ = 𝐴))) |
| 9 | 6, 8 | mpbid 232 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (-∞ < 𝐴 ∨ -∞ = 𝐴)) |
| 10 | 9 | ord 864 | . . 3 ⊢ (𝐴 ∈ ℝ* → (¬ -∞ < 𝐴 → -∞ = 𝐴)) |
| 11 | eqcom 2736 | . . 3 ⊢ (-∞ = 𝐴 ↔ 𝐴 = -∞) | |
| 12 | 10, 11 | imbitrdi 251 | . 2 ⊢ (𝐴 ∈ ℝ* → (¬ -∞ < 𝐴 → 𝐴 = -∞)) |
| 13 | 5, 12 | impbid2 226 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 -∞cmnf 11166 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 |
| This theorem is referenced by: xlemnf 13087 xrrebnd 13088 ge0nemnf 13093 xlt2add 13180 xrsdsreclblem 21337 xblpnfps 24299 xblpnf 24300 supxrnemnf 32724 itg2addnclem 37653 supxrgelem 45320 supxrge 45321 nemnftgtmnft 45327 infxrbnd2 45352 |
| Copyright terms: Public domain | W3C validator |